Nuprl Lemma : State-comb-es-sv1

[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[f:A ─→ B ─→ B]. ∀[X:EClass(A)]. ∀[init:Id ─→ bag(B)].
  (es-sv-class(es;State-comb(init;f;X))) supposing ((∀l:Id. (#(init l) ≤ 1)) and es-sv-class(es;X))


Proof




Definitions occuring in Statement :  State-comb: State-comb(init;f;X) es-sv-class: es-sv-class(es;X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) Id: Id uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a function: x:A ─→ B[x] natural_number: $n universe: Type bag-size: #(bs) bag: bag(T)
Lemmas :  rec-comb-es-sv false_wf le_wf int_seg_wf select_wf cons_wf nil_wf sq_stable__le length_wf length_nil non_neg_length length_wf_nil length_cons length_wf_nat bag-null_wf lelt_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert-bag-null equal-wf-T-base bag_wf lifting-2_wf decidable__equal_int int_subtype_base bag-size_wf nat_wf all_wf assert_wf bnot_wf not_wf less_than_wf State-comb_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf Id_wf es-sv-class_wf uiff_transitivity eqtt_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot bag-size-zero decidable__le not-le-2 not-equal-2 condition-implies-le add-commutes minus-add minus-zero zero-add add_functionality_wrt_le add-associates le-add-cancel2 add-swap empty-bag_wf bag-size-one bag-combine-single-left bag-combine_wf single-bag_wf bag-only_wf2 single-valued-bag-if-le1 decidable__lt le_antisymmetry_iff le-add-cancel le_weakening bag_combine_empty_lemma bag_size_empty_lemma add-zero bag_size_single_lemma

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    (es-sv-class(es;State-comb(init;f;X)))  supposing  ((\mforall{}l:Id.  (\#(init  l)  \mleq{}  1))  and  es-sv-class(es;X))



Date html generated: 2015_07_22-PM-00_22_11
Last ObjectModification: 2015_01_28-AM-10_14_23

Home Index