Nuprl Lemma : Euclid-Prop25

p:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (a bc  ef  ab ≅ de  ac ≅ df  |ef| < |bc|  edf < bac)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} and: P ∧ Q or: P ∨ Q geo-lsep: bc uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B uimplies: supposing a cand: c∧ B exists: x:A. B[x] basic-geometry-: BasicGeometry- uiff: uiff(P;Q) oriented-plane: OrientedPlane sq_stable: SqStable(P) squash: T geo-midpoint: a=m=b geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m iff: ⇐⇒ Q rev_implies:  Q geo-lt-angle: abc < xyz l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) less_than: a < b true: True ge: i ≥  append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-out: out(p ab) geo-eq: a ≡ b geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c
Lemmas referenced :  geo-lt-implies-point lsep-implies-sep lsep-all-sym geo-lt_wf geo-length_wf geo-mk-seg_wf geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf geo-point_wf Euclid-Prop23_half-plane2 geo-proper-extend-exists geo-O_wf geo-X_wf left-implies-sep geo-sep-O-X geo-sep-sym geo-strict-between-sep3 geo-out-if-between geo-strict-between-sym geo-left-out-1 geo-out_inversion geo-left-out-3 geo-out_weakening geo-eq_weakening geo-cong-angle-symmetry geo-left_wf geo-cong-angle_wf out-preserves-angle-cong_1 geo-left-out-2 geo-between-out geo-strict-between-sep1 geo-strict-between-implies-between geo-sas2 geo-congruent-iff-length isosceles-sep-implies-lsep geo-midpoint_wf geo-sep_wf left-between sq_stable__geo-between geo-between-symmetry colinear-lsep-cycle geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-sep-or use-plane-sep_strict left-symmetry lsep-iff-all-sep geo-out-colinear lsep-all-sym2 not-lsep-if-colinear geo-out_wf geo-cong-angle-refl geo-between-trivial lsep-not-between geo-colinear-append cons_wf nil_wf length_wf select_wf nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma l_member_wf list_ind_cons_lemma list_ind_nil_lemma euclidean-plane-axioms geo-strict-between-sep2 geo-between_wf Euclid-Prop24 geo-cong-angle-preserves-lt-angle geo-colinear-cases false_wf stable__false geo-eq_wf geo-between-sep geo-strict-between_wf not-left-and-right left-between-implies-right1 left-convex2 not-gt-and-lt out-cong-angle geo-cong-angle-symm2 lsep-symmetry geo-cong-angle-preserves-lt-angle2 Euclid-Prop23_half-plane geo-left-out left-between-implies-right2 left-convex geo-between-inner-trans geo-between-exchange3 geo-between-exchange4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache productElimination unionElimination universeIsType isectElimination sqequalRule setElimination rename applyEquality instantiate independent_isectElimination inhabitedIsType dependent_pairFormation_alt independent_pairFormation productIsType equalitySymmetry equalityTransitivity setIsType imageMemberEquality baseClosed imageElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality approximateComputation lambdaEquality_alt equalityIstype int_eqEquality functionIsType inrFormation_alt

Latex:
\mforall{}p:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.
    (a  \#  bc  {}\mRightarrow{}  d  \#  ef  {}\mRightarrow{}  ab  \mcong{}  de  {}\mRightarrow{}  ac  \mcong{}  df  {}\mRightarrow{}  |ef|  <  |bc|  {}\mRightarrow{}  edf  <  bac)



Date html generated: 2019_10_16-PM-02_35_16
Last ObjectModification: 2019_09_24-PM-02_06_33

Theory : euclidean!plane!geometry


Home Index