Nuprl Lemma : ip-five-segment-lemma

[rv:InnerProductSpace]. ∀[A,B,C,D:Point(rv)]. ∀[t:ℝ].
  ((t ∈ (r0, r1))
   B ≡ t*A r1 t*C
   let ||D B|| in
      let ||A D|| in
      let ||B C|| in
      let ||A B|| in
      let ||D C|| in
      let (t/t r1) in
      x^2 (c^2 a^2 (s (b^2 d^2 a^2))))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y rooint: (l, u) i-member: r ∈ I rdiv: (x/y) rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: let: let uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  let: let all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False rneq: x ≠ y or: P ∨ Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rv-sub: y rv-minus: -x true: True squash: T rdiv: (x/y)
Lemmas referenced :  member_rooint_lemma istype-void radd-preserves-rless rsub_wf int-to-real_wf Error :ss-eq_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-add_wf rv-mul_wf rless_wf req_witness rnexp_wf istype-le rv-norm_wf rv-sub_wf radd_wf rmul_wf rdiv_wf rless-implies-rless real_wf Error :ss-point_wf,  itermSubtract_wf itermAdd_wf itermConstant_wf itermVar_wf rv-ip_wf req-iff-rsub-is-0 rless_functionality real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_var_lemma req_functionality rv-norm-squared radd_functionality rmul_functionality req_weakening rsub_functionality rv-minus_wf rv-0_wf itermMultiply_wf uiff_transitivity Error :ss-eq_functionality,  Error :ss-eq_weakening,  rv-add-assoc rv-add_functionality rv-mul-add-1-alt rv-add-comm rv-add-swap rv-mul_functionality rv-mul0 rv-add-0 rv-ip_functionality rv-mul-linear rv-mul-mul rv-mul-add-alt req_transitivity rv-0-add real_term_value_mul_lemma rv-ip-add-squared rv-ip-sub-squared rminus_wf itermMinus_wf real_term_value_minus_lemma rv-ip-symmetry rminus-as-rmul req_wf req_inversion rv-ip-mul squash_wf true_wf subtype_rel_self iff_weakening_equal Error :ss-eq_transitivity,  rv-sub_functionality rless_transitivity2 rleq_weakening rdiv_functionality rinv_wf2 rv-mul-add rinv-mul-as-rdiv rminus_functionality rmul-int rmul_preserves_req rmul-rinv equal_wf istype-universe iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isect_memberFormation_alt lambdaFormation_alt productElimination isectElimination hypothesisEquality natural_numberEquality because_Cache independent_functionElimination universeIsType applyEquality instantiate independent_isectElimination productIsType lambdaEquality_alt dependent_set_memberEquality_alt independent_pairFormation setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry closedConclusion inlFormation_alt functionIsTypeImplies isectIsTypeImplies approximateComputation int_eqEquality minusEquality equalityIstype imageElimination imageMemberEquality baseClosed universeEquality multiplyEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[A,B,C,D:Point(rv)].  \mforall{}[t:\mBbbR{}].
    ((t  \mmember{}  (r0,  r1))
    {}\mRightarrow{}  B  \mequiv{}  t*A  +  r1  -  t*C
    {}\mRightarrow{}  let  a  =  ||D  -  B||  in
            let  b  =  ||A  -  D||  in
            let  c  =  ||B  -  C||  in
            let  d  =  ||A  -  B||  in
            let  x  =  ||D  -  C||  in
            let  s  =  (t/t  -  r1)  in
            x\^{}2  =  (c\^{}2  +  a\^{}2  +  (s  *  (b\^{}2  -  d\^{}2  +  a\^{}2))))



Date html generated: 2020_05_20-PM-01_13_54
Last ObjectModification: 2019_12_11-PM-07_59_19

Theory : inner!product!spaces


Home Index