Nuprl Lemma : series-converges-tail

x:ℕ ⟶ ℝn.x[n]↓  (∀y:ℕ ⟶ ℝ((∃N:ℕ. ∀n:{N...}. (y[n] x[n]))  Σn.y[n]↓)))


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ req: y real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] series-converges: Σn.x[n]↓ member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: series-sum: Σn.x[n] a converges-to: lim n→∞.x[n] y sq_exists: x:{A| B[x]} guard: {T} nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) int_upper: {i...} pointwise-req: x[k] y[k] for k ∈ [n,m] rsub: y itermConstant: "const" req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermVar: vvar itermAdd: left (+) right itermMultiply: left (*) right itermMinus: "-"num rge: x ≥ y
Lemmas referenced :  radd_wf rsum_wf rsub_wf nat_wf int_seg_subtype_nat false_wf int_seg_wf imax_wf imax_nat nat_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf all_wf rleq_wf rabs_wf rdiv_wf int-to-real_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rless_wf nat_plus_wf series-sum_wf exists_wf int_upper_wf req_wf int_upper_subtype_nat real_wf series-converges_wf imax_ub le_functionality le_weakening rsum-split subtype_rel_dep_function subtype_rel_self int_seg_properties itermAdd_wf int_term_value_add_lemma req_functionality req_weakening rsub_functionality rsum_functionality radd_functionality uiff_transitivity rminus_wf radd-preserves-req req_inversion radd-assoc radd_comm req_transitivity radd-ac rminus_functionality rsum_functionality2 radd-rminus-assoc rmul_wf rminus-as-rmul real_term_polynomial itermSubtract_wf itermMultiply_wf itermMinus_wf req-iff-rsub-is-0 rsum_linearity2 rsum_linearity1 rabs_functionality rleq_functionality rleq_weakening_equal rleq_functionality_wrt_implies rmul_functionality rminus-radd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality addEquality independent_isectElimination independent_pairFormation dependent_functionElimination dependent_set_memberFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality inrFormation inlFormation minusEquality

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mSigma{}n.x[n]\mdownarrow{}  {}\mRightarrow{}  (\mforall{}y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  ((\mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  (y[n]  =  x[n]))  {}\mRightarrow{}  \mSigma{}n.y[n]\mdownarrow{})))



Date html generated: 2017_10_03-AM-09_18_39
Last ObjectModification: 2017_07_28-AM-07_43_35

Theory : reals


Home Index