Nuprl Lemma : series-converges-tail
∀x:ℕ ⟶ ℝ. (Σn.x[n]↓ 
⇒ (∀y:ℕ ⟶ ℝ. ((∃N:ℕ. ∀n:{N...}. (y[n] = x[n])) 
⇒ Σn.y[n]↓)))
Proof
Definitions occuring in Statement : 
series-converges: Σn.x[n]↓
, 
req: x = y
, 
real: ℝ
, 
int_upper: {i...}
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
series-converges: Σn.x[n]↓
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
series-sum: Σn.x[n] = a
, 
converges-to: lim n→∞.x[n] = y
, 
sq_exists: ∃x:{A| B[x]}
, 
guard: {T}
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
int_upper: {i...}
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
rsub: x - y
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
real_term_value: real_term_value(f;t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
itermVar: vvar
, 
itermAdd: left (+) right
, 
itermMultiply: left (*) right
, 
itermMinus: "-"num
, 
rge: x ≥ y
Lemmas referenced : 
radd_wf, 
rsum_wf, 
rsub_wf, 
nat_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
imax_wf, 
imax_nat, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
le_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
rless_wf, 
nat_plus_wf, 
series-sum_wf, 
exists_wf, 
int_upper_wf, 
req_wf, 
int_upper_subtype_nat, 
real_wf, 
series-converges_wf, 
imax_ub, 
le_functionality, 
le_weakening, 
rsum-split, 
subtype_rel_dep_function, 
subtype_rel_self, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
req_functionality, 
req_weakening, 
rsub_functionality, 
rsum_functionality, 
radd_functionality, 
uiff_transitivity, 
rminus_wf, 
radd-preserves-req, 
req_inversion, 
radd-assoc, 
radd_comm, 
req_transitivity, 
radd-ac, 
rminus_functionality, 
rsum_functionality2, 
radd-rminus-assoc, 
rmul_wf, 
rminus-as-rmul, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
rsum_linearity2, 
rsum_linearity1, 
rabs_functionality, 
rleq_functionality, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rmul_functionality, 
rminus-radd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
dependent_set_memberFormation, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
functionEquality, 
inrFormation, 
inlFormation, 
minusEquality
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mSigma{}n.x[n]\mdownarrow{}  {}\mRightarrow{}  (\mforall{}y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  ((\mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  (y[n]  =  x[n]))  {}\mRightarrow{}  \mSigma{}n.y[n]\mdownarrow{})))
Date html generated:
2017_10_03-AM-09_18_39
Last ObjectModification:
2017_07_28-AM-07_43_35
Theory : reals
Home
Index