Nuprl Lemma : num-digits_wf
∀[k:ℕ]. (num-digits(k) ∈ {n:ℕ+| ((10^n - 1 ≤ k) ∨ (k = 0 ∈ ℤ)) ∧ k < 10^n} )
Proof
Definitions occuring in Statement : 
num-digits: num-digits(k), 
exp: i^n, 
nat_plus: ℕ+, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
or: P ∨ Q, 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
num-digits: num-digits(k), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
true: True, 
squash: ↓T, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nat_plus: ℕ+, 
cand: A c∧ B, 
subtract: n - m, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
has-value: (a)↓, 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
exp0_lemma, 
decidable__or, 
equal-wf-base, 
int_subtype_base, 
intformor_wf, 
int_formula_prop_or_lemma, 
squash_wf, 
true_wf, 
exp1, 
iff_weakening_equal, 
or_wf, 
exp_wf2, 
nat_plus_properties, 
equal-wf-T-base, 
nat_plus_subtype_nat, 
value-type-has-value, 
int-value-type, 
div_rem_sum, 
nequal_wf, 
rem_bounds_1, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
set_wf, 
nat_plus_wf, 
not-lt-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
zero-add, 
le-add-cancel, 
set_subtype_base, 
exp-positive, 
exp_add, 
exp_step
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
universeEquality, 
productEquality, 
callbyvalueReduce, 
divideEquality, 
addLevel, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
multiplyEquality, 
inlFormation
Latex:
\mforall{}[k:\mBbbN{}].  (num-digits(k)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  ((10\^{}n  -  1  \mleq{}  k)  \mvee{}  (k  =  0))  \mwedge{}  k  <  10\^{}n\}  )
Date html generated:
2017_10_04-PM-11_01_34
Last ObjectModification:
2017_06_02-PM-00_14_37
Theory : reals_2
Home
Index