Nuprl Lemma : ap2-tuple_wf

[n:ℕ]. ∀[A,B:Type List].
  ∀[C:Type]. ∀[x:C]. ∀[f:tuple-type(map(λp.(C ⟶ (fst(p)) ⟶ (snd(p)));zip(A;B)))]. ∀[t:tuple-type(A)].
    (ap2-tuple(n;f;x;t) ∈ tuple-type(B)) 
  supposing (||A|| n ∈ ℤ) ∧ (||B|| n ∈ ℤ)


Proof




Definitions occuring in Statement :  ap2-tuple: ap2-tuple(len;f;x;t) tuple-type: tuple-type(L) zip: zip(as;bs) length: ||as|| map: map(f;as) list: List nat: uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: or: P ∨ Q ap2-tuple: ap2-tuple(len;f;x;t) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt cons: [a b] le: A ≤ B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  decidable: Dec(P) tuple-type: tuple-type(L) list_ind: list_ind
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases tupletype_nil_lemma zip_nil_lemma map_nil_lemma length_of_nil_lemma product_subtype_list length_of_cons_lemma non_neg_length intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma tupletype_cons_lemma null_wf eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base list_wf tuple-type_wf map_wf zip_wf istype-universe length_wf_nat set_subtype_base le_wf int_subtype_base subtract-1-ge-0 zip_cons_cons_lemma map_cons_lemma eq_int_wf assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity neg_assert_of_eq_int null_nil_lemma null_cons_lemma zip_cons_nil_lemma btrue_wf bfalse_wf btrue_neq_bfalse nil_wf intformnot_wf int_formula_prop_not_lemma nat_wf bnot_wf not_wf cons_wf decidable__equal_int add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf length_wf subtract_wf subtype_rel_self ifthenelse_wf bool_cases iff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry universeEquality instantiate unionElimination promote_hyp hypothesis_subsumption Error :inhabitedIsType,  equalityElimination because_Cache Error :equalityIsType1,  cumulativity baseClosed Error :equalityIsType3,  productEquality functionEquality Error :productIsType,  Error :equalityIsType4,  applyEquality intEquality Error :equalityIsType2,  baseApply closedConclusion Error :dependent_set_memberEquality_alt,  applyLambdaEquality independent_pairEquality pointwiseFunctionality addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[A,B:Type  List].
    \mforall{}[C:Type].  \mforall{}[x:C].  \mforall{}[f:tuple-type(map(\mlambda{}p.(C  {}\mrightarrow{}  (fst(p))  {}\mrightarrow{}  (snd(p)));zip(A;B)))].
    \mforall{}[t:tuple-type(A)].
        (ap2-tuple(n;f;x;t)  \mmember{}  tuple-type(B)) 
    supposing  (||A||  =  n)  \mwedge{}  (||B||  =  n)



Date html generated: 2019_06_20-PM-02_03_15
Last ObjectModification: 2018_10_06-AM-11_41_45

Theory : tuples


Home Index