Nuprl Lemma : bag-mapfilter-fast-eq

[A,B:Type]. ∀[bs:bag(A)]. ∀[P:A ⟶ 𝔹]. ∀[f:{x:A| ↑P[x]}  ⟶ B].
  (bag-mapfilter-fast(f;P;bs) bag-mapfilter(f;P;bs) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-mapfilter-fast: bag-mapfilter-fast(f;P;bs) bag-mapfilter: bag-mapfilter(f;P;bs) bag: bag(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-mapfilter: bag-mapfilter(f;P;bs) so_apply: x[s] prop: so_lambda: λ2x.t[x] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] top: Top so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] bag-mapfilter-fast: bag-mapfilter-fast(f;P;bs) exists: x:A. B[x] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff empty-bag: {} bag-accum: bag-accum(v,x.f[v; x];init;bs) cons-bag: x.b bnot: ¬bb assert: b label: ...$L... t bag-append: as bs single-bag: {x} append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  bag-map-as-accum assert_wf bag-filter_wf equal_wf squash_wf true_wf bag_wf bag-mapfilter-fast_wf iff_weakening_equal bag-filter-as-accum bool_wf set_wf empty-bag_wf cons-bag_wf cons-bag-as-append bag-append_wf bag-append-comm single-bag_wf bag-accum_wf all_wf bag-append-assoc bag_to_squash_list nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int eqtt_to_assert list_accum_nil_lemma nil_wf list-subtype-bag bag-append-assoc-comm eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot subtype_rel_list top_wf list_accum_append bag-accum-single list_accum_wf ifthenelse_wf append_wf bag-subtype-list list_ind_cons_lemma list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis sqequalRule lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination functionEquality isect_memberEquality axiomEquality setElimination rename dependent_set_memberEquality lambdaFormation voidElimination voidEquality dependent_functionElimination promote_hyp intWeakElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll unionElimination hypothesis_subsumption applyLambdaEquality addEquality instantiate hyp_replacement equalityElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  \muparrow{}P[x]\}    {}\mrightarrow{}  B].
    (bag-mapfilter-fast(f;P;bs)  =  bag-mapfilter(f;P;bs))



Date html generated: 2017_10_01-AM-08_58_35
Last ObjectModification: 2017_07_26-PM-04_40_28

Theory : bags


Home Index