Nuprl Lemma : bag-mapfilter-fast-eq
∀[A,B:Type]. ∀[bs:bag(A)]. ∀[P:A ⟶ 𝔹]. ∀[f:{x:A| ↑P[x]}  ⟶ B].
  (bag-mapfilter-fast(f;P;bs) = bag-mapfilter(f;P;bs) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-mapfilter-fast: bag-mapfilter-fast(f;P;bs), 
bag-mapfilter: bag-mapfilter(f;P;bs), 
bag: bag(T), 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag-mapfilter: bag-mapfilter(f;P;bs), 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
bag-mapfilter-fast: bag-mapfilter-fast(f;P;bs), 
exists: ∃x:A. B[x], 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
cons: [a / b], 
colength: colength(L), 
decidable: Dec(P), 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
less_than: a < b, 
less_than': less_than'(a;b), 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
empty-bag: {}, 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
cons-bag: x.b, 
bnot: ¬bb, 
assert: ↑b, 
label: ...$L... t, 
bag-append: as + bs, 
single-bag: {x}, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
bag-map-as-accum, 
assert_wf, 
bag-filter_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-mapfilter-fast_wf, 
iff_weakening_equal, 
bag-filter-as-accum, 
bool_wf, 
set_wf, 
empty-bag_wf, 
cons-bag_wf, 
cons-bag-as-append, 
bag-append_wf, 
bag-append-comm, 
single-bag_wf, 
bag-accum_wf, 
all_wf, 
bag-append-assoc, 
bag_to_squash_list, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list_wf, 
list-cases, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
eqtt_to_assert, 
list_accum_nil_lemma, 
nil_wf, 
list-subtype-bag, 
bag-append-assoc-comm, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
subtype_rel_list, 
top_wf, 
list_accum_append, 
bag-accum-single, 
list_accum_wf, 
ifthenelse_wf, 
append_wf, 
bag-subtype-list, 
list_ind_cons_lemma, 
list_ind_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lambdaFormation, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
promote_hyp, 
intWeakElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
hypothesis_subsumption, 
applyLambdaEquality, 
addEquality, 
instantiate, 
hyp_replacement, 
equalityElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  \muparrow{}P[x]\}    {}\mrightarrow{}  B].
    (bag-mapfilter-fast(f;P;bs)  =  bag-mapfilter(f;P;bs))
Date html generated:
2017_10_01-AM-08_58_35
Last ObjectModification:
2017_07_26-PM-04_40_28
Theory : bags
Home
Index