Nuprl Lemma : fpf-join-is-empty
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:x:A fp-> Top].  (fpf-is-empty(f ⊕ g) ~ fpf-is-empty(f) ∧b fpf-is-empty(g))
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-is-empty: fpf-is-empty(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
band: p ∧b q, 
uall: ∀[x:A]. B[x], 
top: Top, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
guard: {T}, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
sq_type: SQType(T), 
fpf-dom: x ∈ dom(f), 
pi1: fst(t), 
fpf-join: f ⊕ g, 
fpf-is-empty: fpf-is-empty(f), 
fpf: a:A fp-> B[a], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
cons: [a / b], 
btrue: tt, 
band: p ∧b q, 
eq_int: (i =z j), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
so_apply: x[s1;s2;s3], 
top: Top, 
so_lambda: so_lambda3, 
append: as @ bs, 
or: P ∨ Q, 
true: True, 
assert: ↑b, 
l_all: (∀x∈L.P[x]), 
prop: ℙ, 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
eqof: eqof(d), 
iff: P ⇐⇒ Q, 
squash: ↓T, 
ge: i ≥ j , 
le: A ≤ B, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
deq_wf, 
top_wf, 
fpf_wf, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
length_of_cons_lemma, 
deq_member_cons_lemma, 
list_ind_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
deq_member_nil_lemma, 
list_ind_nil_lemma, 
list-cases, 
length_wf, 
eq_int_wf, 
btrue_wf, 
filter_trivial, 
int_seg_wf, 
length-append, 
append_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
bor_wf, 
deq-member_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_imp_equal_bool, 
zero-add-sq, 
equal_wf, 
add_functionality_wrt_eq, 
length_of_null_list, 
non_neg_length, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
length_append, 
iff_weakening_equal, 
eqof_wf, 
int_subtype_base, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-base, 
iff_transitivity, 
bool_cases, 
band_wf, 
bfalse_wf, 
assert_of_band, 
istype-assert, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
add-associates, 
add-zero, 
add-commutes
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
lambdaEquality, 
hypothesisEquality, 
axiomSqEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
hypothesis_subsumption, 
promote_hyp, 
voidEquality, 
voidElimination, 
unionElimination, 
natural_numberEquality, 
lambdaFormation, 
Error :memTop, 
addEquality, 
lambdaEquality_alt, 
lambdaFormation_alt, 
universeIsType, 
setElimination, 
rename, 
applyEquality, 
setIsType, 
closedConclusion, 
inhabitedIsType, 
equalityElimination, 
independent_pairFormation, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
sqequalBase, 
productIsType, 
intEquality, 
productEquality, 
isect_memberEquality_alt
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:x:A  fp->  Top].
    (fpf-is-empty(f  \moplus{}  g)  \msim{}  fpf-is-empty(f)  \mwedge{}\msubb{}  fpf-is-empty(g))
Date html generated:
2020_05_20-AM-09_02_39
Last ObjectModification:
2020_01_25-AM-09_13_00
Theory : finite!partial!functions
Home
Index