Nuprl Lemma : four-squares

n:ℕ+. ∃a,b,c,d:ℤ(n ((a a) (b b) (c c) (d d)) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + all: x:A. B[x] exists: x:A. B[x] multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  implies:  Q so_apply: x[s] subtype_rel: A ⊆B nat_plus: + member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] guard: {T} sq_type: SQType(T) int_upper: {i...} Prime: Prime and: P ∧ Q iff: ⇐⇒ Q true: True uiff: uiff(P;Q) rev_implies:  Q int_seg: {i..j-} squash: T sq_stable: SqStable(P) less_than': less_than'(a;b) le: A ≤ B nat: inject: Inj(A;B;f) label: ...$L... t lelt: i ≤ j < k divides: a eqmod: a ≡ mod m sq_exists: x:A [B[x]] cand: c∧ B
Lemmas referenced :  nat_plus_wf int_subtype_base equal-wf-T-base exists_wf nat-plus-ind-primes equal-wf-base int_formula_prop_wf int_term_value_mul_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermMultiply_wf itermAdd_wf itermConstant_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int Prime_wf subtype_base_sq int_upper_properties assert-isOdd Prime-isOdd int_seg_wf int-subtype-int_mod le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 less_than_wf modulus_wf_int_mod int_formula_prop_less_lemma intformless_wf decidable__lt set_wf sq_stable__le subtype_rel_sets int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermVar_wf intformle_wf intformand_wf decidable__le le_wf false_wf int_upper_subtype_nat decidable__prime prime_wf sq_stable_from_decidable pigeon-hole-implies2 equal_wf eqmod_weakening subtract_wf int_term_value_subtract_lemma itermSubtract_wf int_seg_properties mod-eqmod eqmod_inversion eqmod_transitivity eqmod_functionality_wrt_eqmod subtract_functionality_wrt_eqmod product-eq-0-mod-prime lelt_wf mul_preserves_le int_term_value_minus_lemma itermMinus_wf sq_stable__equal add_functionality_wrt_eqmod int_seg_subtype_nat mul_bounds_1a equal-wf-base-T prime-sum-of-four-squares iff_weakening_equal Euler-four-square-identity true_wf squash_wf
Rules used in proof :  independent_functionElimination because_Cache applyEquality baseClosed closedConclusion baseApply hypothesis hypothesisEquality rename setElimination intEquality lambdaEquality sqequalRule thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut voidEquality voidElimination isect_memberEquality dependent_pairFormation approximateComputation independent_isectElimination unionElimination dependent_functionElimination natural_numberEquality cumulativity instantiate lambdaFormation equalitySymmetry equalityTransitivity productElimination minusEquality multiplyEquality setEquality int_eqEquality imageElimination imageMemberEquality independent_pairFormation addEquality dependent_set_memberEquality levelHypothesis addLevel applyLambdaEquality promote_hyp equalityUniverse universeEquality functionEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mexists{}a,b,c,d:\mBbbZ{}.  (n  =  ((a  *  a)  +  (b  *  b)  +  (c  *  c)  +  (d  *  d)))



Date html generated: 2018_05_21-PM-07_30_42
Last ObjectModification: 2018_01_01-PM-00_36_00

Theory : general


Home Index