Nuprl Lemma : four-squares
∀n:ℕ+. ∃a,b,c,d:ℤ. (n = ((a * a) + (b * b) + (c * c) + (d * d)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
prop: ℙ
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
int_upper: {i...}
, 
Prime: Prime
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
inject: Inj(A;B;f)
, 
label: ...$L... t
, 
lelt: i ≤ j < k
, 
divides: b | a
, 
eqmod: a ≡ b mod m
, 
sq_exists: ∃x:A [B[x]]
, 
cand: A c∧ B
Lemmas referenced : 
nat_plus_wf, 
int_subtype_base, 
equal-wf-T-base, 
exists_wf, 
nat-plus-ind-primes, 
equal-wf-base, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermMultiply_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
Prime_wf, 
subtype_base_sq, 
int_upper_properties, 
assert-isOdd, 
Prime-isOdd, 
int_seg_wf, 
int-subtype-int_mod, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
less_than_wf, 
modulus_wf_int_mod, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
set_wf, 
sq_stable__le, 
subtype_rel_sets, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
decidable__le, 
le_wf, 
false_wf, 
int_upper_subtype_nat, 
decidable__prime, 
prime_wf, 
sq_stable_from_decidable, 
pigeon-hole-implies2, 
equal_wf, 
eqmod_weakening, 
subtract_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
int_seg_properties, 
mod-eqmod, 
eqmod_inversion, 
eqmod_transitivity, 
eqmod_functionality_wrt_eqmod, 
subtract_functionality_wrt_eqmod, 
product-eq-0-mod-prime, 
lelt_wf, 
mul_preserves_le, 
int_term_value_minus_lemma, 
itermMinus_wf, 
sq_stable__equal, 
add_functionality_wrt_eqmod, 
int_seg_subtype_nat, 
mul_bounds_1a, 
equal-wf-base-T, 
prime-sum-of-four-squares, 
iff_weakening_equal, 
Euler-four-square-identity, 
true_wf, 
squash_wf
Rules used in proof : 
independent_functionElimination, 
because_Cache, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
intEquality, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_pairFormation, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
cumulativity, 
instantiate, 
lambdaFormation, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
minusEquality, 
multiplyEquality, 
setEquality, 
int_eqEquality, 
imageElimination, 
imageMemberEquality, 
independent_pairFormation, 
addEquality, 
dependent_set_memberEquality, 
levelHypothesis, 
addLevel, 
applyLambdaEquality, 
promote_hyp, 
equalityUniverse, 
universeEquality, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mexists{}a,b,c,d:\mBbbZ{}.  (n  =  ((a  *  a)  +  (b  *  b)  +  (c  *  c)  +  (d  *  d)))
Date html generated:
2018_05_21-PM-07_30_42
Last ObjectModification:
2018_01_01-PM-00_36_00
Theory : general
Home
Index