Nuprl Lemma : prime-sum-of-four-squares

p:Prime. ∀r:ℕ. ∀a,b,c,d:ℤ.
  (((((a a) (b b) (c c) (d d)) (p r) ∈ ℤ) ∧ 0 < r ∧ r < p)
   (∃a,b,c,d:ℤ(p ((a a) (b b) (c c) (d d)) ∈ ℤ)))


Proof




Definitions occuring in Statement :  Prime: Prime nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  nat_plus: + cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x] ge: i ≥  sq_type: SQType(T) squash: T sq_stable: SqStable(P) nat: less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k int_upper: {i...} false: False Prime: Prime int_seg: {i..j-} guard: {T} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] divides: a eqmod: a ≡ mod m iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q true: True rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  int_nzero: -o less_than: a < b assert: b ifthenelse: if then else fi  bnot: ¬bb bfalse: ff btrue: tt it: unit: Unit bool: 𝔹
Lemmas referenced :  Prime_wf nat_wf primrec-wf2 set_wf lelt_wf decidable__lt all_wf equal-wf-base-T multiply_functionality_wrt_eqmod less_than_wf small-eqmod exists_wf equal-wf-T-base int_term_value_mul_lemma int_term_value_add_lemma itermMultiply_wf itermAdd_wf nat_properties int_subtype_base subtype_base_sq int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma intformeq_wf itermSubtract_wf intformnot_wf decidable__le le_wf int_upper_subtype_nat decidable__prime prime_wf sq_stable_from_decidable false_wf int_seg_subtype subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_upper_properties int_seg_properties add_functionality_wrt_eqmod eqmod_functionality_wrt_eqmod eqmod_weakening multiply-is-int-iff mul_bounds_1a iff_weakening_equal square_non_neg absval_pos equal_wf absval_wf squash_wf true_wf absval_mul le_functionality le_weakening multiply_functionality_wrt_le mul_preserves_lt mul_preserves_le add_functionality_wrt_le int_entire eqmod_wf int_term_value_minus_lemma itermMinus_wf nequal_wf equal-wf-base mul_cancel_in_eq assoced_wf or_wf assoced_elim divides-prime Euler-four-square-identity add_functionality_wrt_eq eqmod_transitivity minus_functionality_wrt_eqmod mul_nzero absval_nat_plus mul_nat_plus mul_bounds_1b int_formula_prop_or_lemma intformor_wf assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert top_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf absval_unfold eqmod_inversion eqmod-zero
Rules used in proof :  addEquality functionEquality multiplyEquality productEquality closedConclusion baseApply cumulativity instantiate hypothesis_subsumption levelHypothesis imageElimination baseClosed imageMemberEquality dependent_set_memberEquality applyLambdaEquality equalitySymmetry equalityTransitivity applyEquality addLevel unionElimination independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination productElimination rename setElimination hypothesis hypothesisEquality because_Cache natural_numberEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution promote_hyp pointwiseFunctionality equalityUniverse universeEquality minusEquality orFunctionality sqequalAxiom isect_memberFormation lessCases equalityElimination

Latex:
\mforall{}p:Prime.  \mforall{}r:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbZ{}.
    (((((a  *  a)  +  (b  *  b)  +  (c  *  c)  +  (d  *  d))  =  (p  *  r))  \mwedge{}  0  <  r  \mwedge{}  r  <  p)
    {}\mRightarrow{}  (\mexists{}a,b,c,d:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b)  +  (c  *  c)  +  (d  *  d)))))



Date html generated: 2018_05_21-PM-07_28_03
Last ObjectModification: 2018_01_01-AM-11_30_57

Theory : general


Home Index