Nuprl Lemma : prime-sum-of-four-squares
∀p:Prime. ∀r:ℕ. ∀a,b,c,d:ℤ.
  (((((a * a) + (b * b) + (c * c) + (d * d)) = (p * r) ∈ ℤ) ∧ 0 < r ∧ r < p)
  
⇒ (∃a,b,c,d:ℤ. (p = ((a * a) + (b * b) + (c * c) + (d * d)) ∈ ℤ)))
Proof
Definitions occuring in Statement : 
Prime: Prime
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_upper: {i...}
, 
false: False
, 
Prime: Prime
, 
int_seg: {i..j-}
, 
guard: {T}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
divides: b | a
, 
eqmod: a ≡ b mod m
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
less_than: a < b
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
Lemmas referenced : 
Prime_wf, 
nat_wf, 
primrec-wf2, 
set_wf, 
lelt_wf, 
decidable__lt, 
all_wf, 
equal-wf-base-T, 
multiply_functionality_wrt_eqmod, 
less_than_wf, 
small-eqmod, 
exists_wf, 
equal-wf-T-base, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
itermMultiply_wf, 
itermAdd_wf, 
nat_properties, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
le_wf, 
int_upper_subtype_nat, 
decidable__prime, 
prime_wf, 
sq_stable_from_decidable, 
false_wf, 
int_seg_subtype, 
subtract_wf, 
decidable__equal_int, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
int_upper_properties, 
int_seg_properties, 
add_functionality_wrt_eqmod, 
eqmod_functionality_wrt_eqmod, 
eqmod_weakening, 
multiply-is-int-iff, 
mul_bounds_1a, 
iff_weakening_equal, 
square_non_neg, 
absval_pos, 
equal_wf, 
absval_wf, 
squash_wf, 
true_wf, 
absval_mul, 
le_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
mul_preserves_lt, 
mul_preserves_le, 
add_functionality_wrt_le, 
int_entire, 
eqmod_wf, 
int_term_value_minus_lemma, 
itermMinus_wf, 
nequal_wf, 
equal-wf-base, 
mul_cancel_in_eq, 
assoced_wf, 
or_wf, 
assoced_elim, 
divides-prime, 
Euler-four-square-identity, 
add_functionality_wrt_eq, 
eqmod_transitivity, 
minus_functionality_wrt_eqmod, 
mul_nzero, 
absval_nat_plus, 
mul_nat_plus, 
mul_bounds_1b, 
int_formula_prop_or_lemma, 
intformor_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
top_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
absval_unfold, 
eqmod_inversion, 
eqmod-zero
Rules used in proof : 
addEquality, 
functionEquality, 
multiplyEquality, 
productEquality, 
closedConclusion, 
baseApply, 
cumulativity, 
instantiate, 
hypothesis_subsumption, 
levelHypothesis, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
addLevel, 
unionElimination, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
productElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
natural_numberEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
promote_hyp, 
pointwiseFunctionality, 
equalityUniverse, 
universeEquality, 
minusEquality, 
orFunctionality, 
sqequalAxiom, 
isect_memberFormation, 
lessCases, 
equalityElimination
Latex:
\mforall{}p:Prime.  \mforall{}r:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbZ{}.
    (((((a  *  a)  +  (b  *  b)  +  (c  *  c)  +  (d  *  d))  =  (p  *  r))  \mwedge{}  0  <  r  \mwedge{}  r  <  p)
    {}\mRightarrow{}  (\mexists{}a,b,c,d:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b)  +  (c  *  c)  +  (d  *  d)))))
Date html generated:
2018_05_21-PM-07_28_03
Last ObjectModification:
2018_01_01-AM-11_30_57
Theory : general
Home
Index