Nuprl Lemma : iroot-lemma

a:ℕ. ∀n,b,k:ℕ+.  ∃x:ℕ. ∃y:ℕ+(a y^n < (x b)^n ∧ ((x b)^n ≤ ((a k) y^n)))


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: less_than: a < b le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m add: m
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat_plus: + nat: uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True less_than: a < b squash: T nequal: a ≠ b ∈  cand: c∧ B sq_type: SQType(T)
Lemmas referenced :  nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than nat_plus_wf istype-nat iroot-property nat_plus_subtype_nat iroot_wf add-is-int-iff set_subtype_base le_wf int_subtype_base less_than_wf istype-false not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel exp_wf2 add_nat_plus intformeq_wf int_formula_prop_eq_lemma false_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le multiply_nat_wf exp_wf4 multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma div_rem_sum nat_plus_inc_int_nzero rem_bounds_1 div_bounds_1 minus-zero mul-swap mul_nat_plus exp_wf_nat_plus divide_wf exp_preserves_le mul_bounds_1a squash_wf true_wf exp-of-mul subtype_rel_self iff_weakening_equal mul_preserves_lt mul_preserves_le add_nat_wf subtype_base_sq decidable__equal_int exp-difference-inequality subtract-add-cancel subtract-is-int-iff exp_step mul-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut dependent_set_memberEquality_alt addEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis introduction extract_by_obid isectElimination dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType inhabitedIsType equalityTransitivity equalitySymmetry applyEquality productElimination because_Cache closedConclusion baseApply baseClosed intEquality minusEquality imageMemberEquality applyLambdaEquality pointwiseFunctionality promote_hyp equalityIsType1 multiplyEquality divideEquality imageElimination equalityIsType4 productIsType instantiate universeEquality cumulativity remainderEquality hyp_replacement

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}n,b,k:\mBbbN{}\msupplus{}.    \mexists{}x:\mBbbN{}.  \mexists{}y:\mBbbN{}\msupplus{}.  (a  *  y\^{}n  <  (x  *  b)\^{}n  \mwedge{}  ((x  *  b)\^{}n  \mleq{}  ((a  +  k)  *  y\^{}n)))



Date html generated: 2019_10_15-AM-11_24_03
Last ObjectModification: 2018_10_18-PM-11_44_15

Theory : general


Home Index