Nuprl Lemma : callbyvalueall_seq-extend
∀[F,G,L,K:Top]. ∀[m:ℕ]. ∀[n:ℕm + 1].
  (callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.let x ⟵ F[g]
                                                in G[g;x];n;m) ~ callbyvalueall_seq(λn.if (n =z m)
                                                                                       then mk_lambdas_fun(λg.F[g];m)
                                                                                       else L n
                                                                                       fi λf.mk_applies(f;K;n)
                                                                                   λg.G[partial_ap(g;m
                                                                                       + 1;m);select_fun_ap(g;m + 1;m)]
                                                                                   n;m + 1))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m)
, 
select_fun_ap: select_fun_ap(g;n;m)
, 
partial_ap: partial_ap(g;n;m)
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
callbyvalueall: callbyvalueall, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
partial_ap: partial_ap(g;n;m)
, 
mk_lambdas: mk_lambdas(F;m)
, 
mk_applies: mk_applies(F;G;m)
, 
lt_int: i <z j
, 
subtract: n - m
, 
select_fun_ap: select_fun_ap(g;n;m)
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
subtract_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
nat_wf, 
top_wf, 
add-zero, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
mk_applies_lambdas_fun0, 
primrec1_lemma, 
mk_applies_lambdas_fun1, 
decidable__lt, 
lelt_wf, 
primrec-unroll, 
primrec0_lemma, 
mk_applies_fun, 
mk_applies_lambdas1, 
mk_applies_roll, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
add-subtract-cancel, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
mk_applies_unroll, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
addEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
intWeakElimination, 
lambdaFormation, 
sqequalAxiom, 
isect_memberFormation, 
equalityElimination, 
promote_hyp, 
applyEquality, 
minusEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}[F,G,L,K:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.let  x  \mleftarrow{}{}  F[g]
                                                                                                in  G[g;x];n;m) 
    \msim{}  callbyvalueall\_seq(\mlambda{}n.if  (n  =\msubz{}  m)  then  mk\_lambdas\_fun(\mlambda{}g.F[g];m)  else  L  n  fi 
                                            ;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.G[partial\_ap(g;m  +  1;m);select\_fun\_ap(g;m  +  1;m)];n;m
                                            +  1))
Date html generated:
2018_05_21-PM-06_23_43
Last ObjectModification:
2018_05_19-PM-05_32_11
Theory : untyped!computation
Home
Index