Nuprl Lemma : name-morph-extend-face-map

[I,K:Cname List]. ∀[i:ℕ2]. ∀[f:name-morph(I;K)].
  (((fresh-cname(I):=i) f) ((f)+ (fresh-cname(K):=i)) ∈ name-morph(I+;K))


Proof




Definitions occuring in Statement :  name-comp: (f g) face-map: (x:=i) name-morph-extend: (f)+ name-morph: name-morph(I;J) add-fresh-cname: I+ fresh-cname: fresh-cname(I) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B name-morph: name-morph(I;J) uimplies: supposing a name-morph-extend: (f)+ name-comp: (f g) has-value: (a)↓ prop: so_lambda: λ2x.t[x] so_apply: x[s] eq-cname: eq-cname(x;y) compose: g nameset: nameset(L) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q coordinate_name: Cname int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T face-map: (x:=i) uext: uext(g) isname: isname(z) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) true: True nequal: a ≠ b ∈  top: Top add-fresh-cname: I+
Lemmas referenced :  name-morphs-equal add-fresh-cname_wf name-comp_wf face-map_wf_fresh-cname name-morph-extend_wf value-type-has-value coordinate_name_wf not_wf l_member_wf set-value-type coordinate_name-value-type fresh-cname_wf eq-cname_wf eqtt_to_assert assert-eq-cname eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf nameset_wf name-morph_wf int_seg_wf set_subtype_base le_wf istype-int int_subtype_base eq_int_wf assert_of_eq_int bool_wf iff_imp_equal_bool le_int_wf bfalse_wf iff_functionality_wrt_iff false_wf assert_of_le_int iff_weakening_equal int_seg_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-void isname-name nsub2_subtype_extd-nameset assert_elim bnot_wf eq_int_eq_true btrue_neq_bfalse neg_assert_of_eq_int btrue_wf not_assert_elim intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma squash_wf true_wf istype-universe subtype_rel_self istype-true cons_member assert-isname nameset_subtype_extd-nameset isname_wf extd-nameset_subtype_int equal-wf-T-base uiff_transitivity assert_of_bnot fresh-cname-not-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule independent_isectElimination callbyvalueReduce setEquality universeIsType because_Cache lambdaFormation_alt unionElimination equalityElimination productElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies natural_numberEquality cumulativity intEquality imageElimination independent_pairFormation applyLambdaEquality imageMemberEquality baseClosed approximateComputation int_eqEquality Error :memTop,  dependent_set_memberEquality_alt productIsType universeEquality

Latex:
\mforall{}[I,K:Cname  List].  \mforall{}[i:\mBbbN{}2].  \mforall{}[f:name-morph(I;K)].
    (((fresh-cname(I):=i)  o  f)  =  ((f)+  o  (fresh-cname(K):=i)))



Date html generated: 2020_05_21-AM-10_48_22
Last ObjectModification: 2019_12_10-PM-00_28_26

Theory : cubical!sets


Home Index