Nuprl Lemma : poset_functor_extend-face-map
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) = 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
∀[y:nameset(I)]. ∀[a:ℕ2]. ∀[c1,c2:name-morph(I-[y];[])].
  poset_functor_extend(C;I;L;E;((y:=a) o c1);((y:=a) o c2))
  = poset_functor_extend(C;I-[y];L o (λf.((y:=a) o f));λz,f. (E z ((y:=a) o f));c1;c2)
  ∈ (cat-arrow(C) (L ((y:=a) o c1)) (L ((y:=a) o c2))) 
  supposing ∀x:nameset(I-[y]). ((c1 x) ≤ (c2 x))
Proof
Definitions occuring in Statement : 
poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2)
, 
name-morph-flip: flip(f;y)
, 
name-comp: (f o g)
, 
face-map: (x:=i)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
compose: f o g
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
face-map: (x:=i)
, 
name-comp: (f o g)
, 
compose: f o g
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uext: uext(g)
, 
isname: isname(z)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
poset_functor_extend-face-map1, 
int_seg_wf, 
nameset_wf, 
set_wf, 
name-morph_wf, 
nil_wf, 
coordinate_name_wf, 
equal-wf-T-base, 
extd-nameset-nil, 
cat-arrow_wf, 
name-morph-flip_wf, 
cat-ob_wf, 
list_wf, 
small-category_wf, 
all_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
le_wf, 
name-comp_wf, 
face-map_wf2, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__equal_int, 
int_subtype_base, 
int_seg_properties, 
false_wf, 
int_seg_subtype, 
int_seg_cases, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
member-list-diff, 
intformeq_wf, 
intformnot_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
member_singleton, 
l_member_wf, 
not_wf, 
squash_wf, 
true_wf, 
uext-ap-name, 
extd-nameset_subtype_int, 
iff_weakening_equal, 
face-map-idempotent, 
face-map-comp-trivial, 
member_wf, 
poset_functor_extend_wf, 
nameset_subtype, 
list-diff-subset, 
subtype_rel-equal, 
name-morph-flip-face-map1, 
subtype_rel_self
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
baseClosed, 
lambdaFormation, 
functionExtensionality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality, 
independent_pairFormation, 
hypothesis_subsumption, 
addEquality, 
int_eqEquality, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination, 
addLevel, 
impliesFunctionality, 
productEquality, 
universeEquality, 
hyp_replacement, 
andLevelFunctionality, 
impliesLevelFunctionality, 
equalityUniverse, 
levelHypothesis, 
setEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[y:nameset(I)].  \mforall{}[a:\mBbbN{}2].  \mforall{}[c1,c2:name-morph(I-[y];[])].
    poset\_functor\_extend(C;I;L;E;((y:=a)  o  c1);((y:=a)  o  c2))
    =  poset\_functor\_extend(C;I-[y];L  o  (\mlambda{}f.((y:=a)  o  f));\mlambda{}z,f.  (E  z  ((y:=a)  o  f));c1;c2) 
    supposing  \mforall{}x:nameset(I-[y]).  ((c1  x)  \mleq{}  (c2  x))
Date html generated:
2017_10_05-AM-10_30_45
Last ObjectModification:
2017_07_28-AM-11_24_28
Theory : cubical!sets
Home
Index