Nuprl Lemma : poset_functor_extend-face-map

[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
[y:nameset(I)]. ∀[a:ℕ2]. ∀[c1,c2:name-morph(I-[y];[])].
  poset_functor_extend(C;I;L;E;((y:=a) c1);((y:=a) c2))
  poset_functor_extend(C;I-[y];L f.((y:=a) f));λz,f. (E ((y:=a) f));c1;c2)
  ∈ (cat-arrow(C) (L ((y:=a) c1)) (L ((y:=a) c2))) 
  supposing ∀x:nameset(I-[y]). ((c1 x) ≤ (c2 x))


Proof




Definitions occuring in Statement :  poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) name-morph-flip: flip(f;y) name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory list-diff: as-bs cons: [a b] nil: [] list: List compose: g int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] name-morph: name-morph(I;J) subtype_rel: A ⊆B prop: so_apply: x[s] all: x:A. B[x] uimplies: supposing a nameset: nameset(L) face-map: (x:=i) name-comp: (f g) compose: g coordinate_name: Cname int_upper: {i...} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False int_seg: {i..j-} decidable: Dec(P) uext: uext(g) isname: isname(z) le_int: i ≤j lt_int: i <j le: A ≤ B less_than': less_than'(a;b) not: ¬A lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B nequal: a ≠ b ∈  squash: T true: True
Lemmas referenced :  poset_functor_extend-face-map1 int_seg_wf nameset_wf set_wf name-morph_wf nil_wf coordinate_name_wf equal-wf-T-base extd-nameset-nil cat-arrow_wf name-morph-flip_wf cat-ob_wf list_wf small-category_wf all_wf list-diff_wf cname_deq_wf cons_wf le_wf name-comp_wf face-map_wf2 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int int_subtype_base int_seg_properties false_wf int_seg_subtype int_seg_cases satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf member-list-diff intformeq_wf intformnot_wf int_formula_prop_eq_lemma int_formula_prop_not_lemma member_singleton l_member_wf not_wf squash_wf true_wf uext-ap-name extd-nameset_subtype_int iff_weakening_equal face-map-idempotent face-map-comp-trivial member_wf poset_functor_extend_wf nameset_subtype list-diff-subset subtype_rel-equal name-morph-flip-face-map1 subtype_rel_self
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality functionEquality sqequalRule lambdaEquality applyEquality setElimination rename because_Cache baseClosed lambdaFormation functionExtensionality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination unionElimination equalityElimination productElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality independent_pairFormation hypothesis_subsumption addEquality int_eqEquality voidEquality computeAll dependent_set_memberEquality applyLambdaEquality imageMemberEquality imageElimination addLevel impliesFunctionality productEquality universeEquality hyp_replacement andLevelFunctionality impliesLevelFunctionality equalityUniverse levelHypothesis setEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[y:nameset(I)].  \mforall{}[a:\mBbbN{}2].  \mforall{}[c1,c2:name-morph(I-[y];[])].
    poset\_functor\_extend(C;I;L;E;((y:=a)  o  c1);((y:=a)  o  c2))
    =  poset\_functor\_extend(C;I-[y];L  o  (\mlambda{}f.((y:=a)  o  f));\mlambda{}z,f.  (E  z  ((y:=a)  o  f));c1;c2) 
    supposing  \mforall{}x:nameset(I-[y]).  ((c1  x)  \mleq{}  (c2  x))



Date html generated: 2017_10_05-AM-10_30_45
Last ObjectModification: 2017_07_28-AM-11_24_28

Theory : cubical!sets


Home Index