Nuprl Lemma : poset_functor_extend-face-map1

[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
[y:nameset(I)]. ∀[a:ℕ2]. ∀[c1,c2:name-morph(I;[])].
  poset_functor_extend(C;I;L;E;((y:=a) c1);((y:=a) c2))
  poset_functor_extend(C;I-[y];L f.((y:=a) f));λz,f. (E ((y:=a) f));c1;c2)
  ∈ (cat-arrow(C) (L ((y:=a) c1)) (L ((y:=a) c2))) 
  supposing ∀x:nameset(I). ((c1 x) ≤ (c2 x))


Proof




Definitions occuring in Statement :  poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) name-morph-flip: flip(f;y) name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory list-diff: as-bs cons: [a b] nil: [] list: List compose: g int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a respects-equality: respects-equality(S;T) all: x:A. B[x] nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} nameset: nameset(L) coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T sq_type: SQType(T) poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi  true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) isname: isname(z) le_int: i ≤j lt_int: i <j bnot: ¬bb assert: b nequal: a ≠ b ∈  has-value: (a)↓ cand: c∧ B l_member: (x ∈ l) eq_int: (i =z j) le: A ≤ B less_than': less_than'(a;b) cons: [a b] subtract: m name-morph-flip: flip(f;y) less_than: a < b
Lemmas referenced :  int_seg_wf nameset_wf respects-equality-set extd-nameset_wf nil_wf coordinate_name_wf lelt_wf istype-int subtype-respects-equality extd-nameset_subtype_int cat-arrow_wf name-morph-flip_wf name-morph_wf cat-ob_wf list_wf small-category_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le decidable__lt istype-le subtype_rel_self length_wf filter_wf5 band_wf eq_int_wf l_member_wf itermAdd_wf int_term_value_add_lemma istype-nat list-subtype cname_deq_wf strong-subtype-deq-subtype strong-subtype-set2 name-comp_wf face-map_wf name-morph_subtype cons_wf nameset_subtype l_subset_right_cons_trivial filter-list-diff bool_cases bool_subtype_base eqtt_to_assert btrue_wf bfalse_wf filter_cons_lemma filter_nil_lemma equal-wf-T-base bool_wf assert_wf assert_of_eq_int istype-assert subtype_rel_universe1 list_subtype_base nameset_subtype_base bor_wf bnot_wf or_wf not_wf equal_wf list-diff-disjoint l_disjoint_nil2 iff_weakening_equal iff_transitivity iff_weakening_uiff assert_of_band bnot_thru_band eqff_to_assert assert_of_bor assert_of_bnot int_seg_subtype_special int_seg_cases bool_cases_sqequal assert-bnot neg_assert_of_eq_int filter-sq list-diff_wf member-list-diff squash_wf true_wf istype-universe uext-ap-name uext_wf subtype_rel_set nameset_subtype_extd-nameset and_wf member_singleton value-type-has-value list-value-type null_wf3 subtype_rel_list top_wf assert_of_null filter_wf_top cat-id_wf name-morph-ext nsub2_subtype_extd-nameset member_filter_2 le_wf select_wf nil_member null_nil_lemma member-implies-null-eq-bfalse btrue_neq_bfalse extd-nameset-nil filter_type hd_wf set_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma length_wf_nat istype-false not-ge-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 filter-filter eq-cname_wf assert-eq-cname filter-less member_filter hd_member cons_neq_nil filter_wf3 non_neg_length l_member_subtype name-morph-flip-face-map cat-comp_wf subtract_nat_wf poset_functor_extend_wf all_wf subtype_rel-equal length-filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis because_Cache functionIsType hypothesisEquality setIsType equalityIstype applyEquality setElimination rename baseClosed sqequalRule intEquality lambdaEquality_alt independent_functionElimination independent_isectElimination dependent_functionElimination sqequalBase equalitySymmetry lambdaFormation_alt intWeakElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies productElimination unionElimination instantiate equalityTransitivity applyLambdaEquality dependent_set_memberEquality_alt imageMemberEquality imageElimination productIsType hypothesis_subsumption addEquality setEquality closedConclusion productEquality unionIsType cumulativity equalityElimination promote_hyp inlFormation_alt inrFormation_alt universeEquality callbyvalueReduce hyp_replacement minusEquality functionExtensionality isect_memberEquality lambdaEquality isect_memberFormation

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[y:nameset(I)].  \mforall{}[a:\mBbbN{}2].  \mforall{}[c1,c2:name-morph(I;[])].
    poset\_functor\_extend(C;I;L;E;((y:=a)  o  c1);((y:=a)  o  c2))
    =  poset\_functor\_extend(C;I-[y];L  o  (\mlambda{}f.((y:=a)  o  f));\mlambda{}z,f.  (E  z  ((y:=a)  o  f));c1;c2) 
    supposing  \mforall{}x:nameset(I).  ((c1  x)  \mleq{}  (c2  x))



Date html generated: 2019_11_05-PM-00_32_42
Last ObjectModification: 2018_12_10-PM-00_12_21

Theory : cubical!sets


Home Index