Nuprl Lemma : fl_all_com

[I:fset(ℕ)]. ∀[i,j:ℕ]. ∀[phi:Point(face_lattice(I+i+j))].  ((∀i.(∀j.phi)) (∀j.(∀i.phi)) ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) face_lattice: face_lattice(I) add-name: I+i lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] compose: g fl_all: (∀i.phi) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q names: names(I) nat: bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  top: Top bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False label: ...$L... t nequal: a ≠ b ∈  ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A sq_stable: SqStable(P) fl-all-hom: fl-all-hom(I;i) fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum
Lemmas referenced :  face_lattice-hom-equal add-name_wf names_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf nat_wf fset_wf compose-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice fl-all-hom_wf1 bounded-lattice-hom_wf all_wf not_wf fl0_wf names-subtype f-subset-add-name fl1_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self lattice-0_wf subtype_rel-equal squash_wf true_wf add-name-com bdd-distributive-lattice_wf iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int fl_all-0 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int fl_all-fl0 deq_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf sq_stable__fset-member decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma not-added-name fl_all_wf fl_all-fl1 face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis independent_isectElimination lambdaFormation sqequalRule independent_pairFormation because_Cache applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality isect_memberFormation isect_memberEquality axiomEquality setElimination rename setEquality functionEquality intEquality dependent_functionElimination dependent_set_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination unionElimination equalityElimination voidElimination voidEquality dependent_pairFormation promote_hyp int_eqEquality computeAll hyp_replacement applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[phi:Point(face\_lattice(I+i+j))].    ((\mforall{}i.(\mforall{}j.phi))  =  (\mforall{}j.(\mforall{}i.phi)))



Date html generated: 2017_10_05-AM-01_16_30
Last ObjectModification: 2017_07_28-AM-09_32_40

Theory : cubical!type!theory


Home Index