Nuprl Lemma : fl_all_com
∀[I:fset(ℕ)]. ∀[i,j:ℕ]. ∀[phi:Point(face_lattice(I+i+j))].  ((∀i.(∀j.phi)) = (∀j.(∀i.phi)) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi)
, 
face_lattice: face_lattice(I)
, 
add-name: I+i
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
compose: f o g
, 
fl_all: (∀i.phi)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
names: names(I)
, 
nat: ℕ
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
label: ...$L... t
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
sq_stable: SqStable(P)
, 
fl-all-hom: fl-all-hom(I;i)
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum
Lemmas referenced : 
face_lattice-hom-equal, 
add-name_wf, 
names_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nat_wf, 
fset_wf, 
compose-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl-all-hom_wf1, 
bounded-lattice-hom_wf, 
all_wf, 
not_wf, 
fl0_wf, 
names-subtype, 
f-subset-add-name, 
fl1_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
lattice-0_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
add-name-com, 
bdd-distributive-lattice_wf, 
iff_weakening_equal, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
fl_all-0, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
fl_all-fl0, 
deq_wf, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
sq_stable__fset-member, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
not-added-name, 
fl_all_wf, 
fl_all-fl1, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
intEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
promote_hyp, 
int_eqEquality, 
computeAll, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[phi:Point(face\_lattice(I+i+j))].    ((\mforall{}i.(\mforall{}j.phi))  =  (\mforall{}j.(\mforall{}i.phi)))
Date html generated:
2017_10_05-AM-01_16_30
Last ObjectModification:
2017_07_28-AM-09_32_40
Theory : cubical!type!theory
Home
Index