Nuprl Lemma : presw-pres-c1

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 ⊢ Compositon(A)].
  G ⊢ (comp (cA)p+ [((phi)p ∨ (q=1)) ⊢→ (presw(G;phi;f;t;t0;cT))p+] (pres-a0(G;f;t0))p)[0(𝕀)]=pres-c1(G;phi;f;t;t0;cA):
  (A)[1(𝕀)]


Proof




Definitions occuring in Statement :  presw: presw(G;phi;f;t;t0;cT) pres-c1: pres-c1(G;phi;f;t;t0;cA) pres-a0: pres-a0(G;f;t0) comp_term: comp cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] same-cubical-term: X ⊢ u=v:A constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-one: (i=1) face-or: (a ∨ b) face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  same-cubical-term: X ⊢ u=v:A uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) uimplies: supposing a composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) csm-ap-term: (t)s pi1: fst(t) pi2: snd(t) csm-id: 1(X) interval-0: 0(𝕀) csm-id-adjoin: [u] interval-1: 1(𝕀) cubical-type: {X ⊢ _} pres-a0: pres-a0(G;f;t0) pres-c1: pres-c1(G;phi;f;t;t0;cA) csm-ap: (s)x compose: g csm-adjoin: (s;u) csm-comp-structure: (cA)tau csm-comp: F csm+: tau+ true: True btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) record-select: r.x lattice-point: Point(l) face-presheaf: 𝔽 functor-ob: ob(F) I_cube: A(I) face-type: 𝔽 cubical-type-at: A(a) so_apply: x[s] and: P ∧ Q prop: so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice cubical-term-at: u(a) face-or: (a ∨ b) face-one: (i=1) squash: T iff: ⇐⇒ Q rev_implies:  Q implies:  Q presw: presw(G;phi;f;t;t0;cT) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} same-cubical-type: Gamma ⊢ B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) cube-context-adjoin: X.A context-subset: Gamma, phi cc-adjoin-cube: (v;u) partial-term-0: u[0] face-term-implies: Gamma ⊢ (phi  psi)
Lemmas referenced :  csm+_wf interval-type_wf cc-fst_wf_interval csm-interval-type context-subset-term-subtype cube-context-adjoin_wf cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cubical-app_wf_fun thin-context-subset cubical-fun-subset subset-cubical-term context-subset_wf face-or_wf face-one_wf cc-snd_wf sub_cubical_set-cumulativity1 sub_cubical_set_functionality context-subset-is-subset csm-ap-type_wf cubical_set_cumulativity-i-j composition-structure_wf csm-id-adjoin_wf interval-0_wf partial-term-0_wf constrained-cubical-term-eqcd istype-cubical-term cubical-type_wf cubical_set_wf interval-1_wf presw_wf composition-function-cumulativity pres-a0-constraint cubical-type-cumulativity2 subtype_rel_self csm-comp-structure_wf csm-comp_term csm+_wf_interval csm-comp-structure-composition-function comp_term_wf csm-face-or cubical-term-equal nat_wf fset_wf I_cube_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-join-0 lattice-join_wf lattice-meet_wf equal_wf lattice-point_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face_lattice_wf cubical-term-at_wf cubical-type-at_wf_face-type csm_id_adjoin_fst_term_lemma squash_wf true_wf istype-universe dM-to-FL-dM0 iff_weakening_equal pres-v_wf csm-cubical-app csm-id-adjoin_wf-interval-1 cubical-term-eqcd csm-cubical-fun face-term-implies-same csm-ap-id-term face-term-implies_wf csm-ap-term-wf-subset composition-function_wf thin-context-subset-adjoin csm-id-adjoin_wf-interval-0 constrained-cubical-term_wf cube_set_map_wf cube_set_map_cumulativity-i-j csm-comp-assoc csm-comp_wf csm-id-comp csm+-id csm-id_wf csm+-comp-csm+-interval cc-fst-csm-adjoin context-adjoin-subset4 I_cube_pair_redex_lemma cc-adjoin-cube_wf pres-a0_wf csm-comp-term csm-context-subset-subtype2 subset-cubical-type lattice-1_wf csm-ap-id-type sub_cubical_set_self subset-cubical-term2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis Error :memTop,  applyEquality instantiate equalityTransitivity equalitySymmetry independent_isectElimination universeIsType setElimination rename dependent_functionElimination lambdaEquality_alt cumulativity universeEquality productElimination functionExtensionality natural_numberEquality isectEquality productEquality imageElimination inhabitedIsType imageMemberEquality baseClosed independent_functionElimination equalityIstype lambdaFormation_alt hyp_replacement applyLambdaEquality dependent_set_memberEquality_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  \mvdash{}  Compositon(A)].
    G  \mvdash{}  (comp  (cA)p+  [((phi)p  \mvee{}  (q=1))  \mvdash{}\mrightarrow{}  (presw(G;phi;f;t;t0;cT))p+]
                      (pres-a0(G;f;t0))p)[0(\mBbbI{})]=pres-c1(G;phi;f;t;t0;cA):(A)[1(\mBbbI{})]



Date html generated: 2020_05_20-PM-05_28_50
Last ObjectModification: 2020_05_02-PM-03_33_55

Theory : cubical!type!theory


Home Index