Nuprl Lemma : rsqrt-irrational
∀n:ℕ. (irrational(rsqrt(r(n))) ∨ (∃m:ℕn + 1. ((m * m) = n ∈ ℤ)))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
irrational: irrational(x)
, 
rsqrt: rsqrt(x)
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
irrational: irrational(x)
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
rge: x ≥ y
, 
less_than: a < b
Lemmas referenced : 
decidable__exists_int_seg, 
equal_wf, 
int_seg_wf, 
decidable__equal_int, 
irrational_wf, 
rsqrt_wf, 
rleq-int, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int-to-real_wf, 
rleq_wf, 
nat_plus_wf, 
exists_wf, 
nat_wf, 
decidable__lt, 
rless_wf, 
nat_plus_properties, 
rdiv_wf, 
rless-int, 
intformless_wf, 
int_formula_prop_less_lemma, 
rmul_wf, 
rless_functionality, 
req_weakening, 
rmul-int, 
rmul_functionality, 
sq_stable__less_than, 
real_wf, 
rmul_preserves_rless, 
rinv_wf2, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-rinv3, 
rinv-as-rdiv, 
rmul_preserves_rleq, 
rleq_functionality, 
rsqrt_squared, 
rsqrt_nonneg, 
req_wf, 
req_inversion, 
rless_transitivity1, 
rleq_weakening, 
rmul-is-positive, 
radd_wf, 
rsub_wf, 
rmul_over_rminus, 
rmul-distrib, 
rmul_comm, 
radd-assoc, 
radd-ac, 
radd_comm, 
radd-rminus-assoc, 
radd-rminus-both, 
radd_functionality, 
radd-zero-both, 
rminus_wf, 
radd-preserves-rless, 
rless-implies-rless, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rless_functionality_wrt_implies, 
radd-int, 
int_term_value_add_lemma, 
itermAdd_wf, 
rless_transitivity2, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
irrational-sqrt-number-lemma, 
rmul-rdiv-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
intEquality, 
multiplyEquality, 
because_Cache, 
independent_functionElimination, 
unionElimination, 
inrFormation, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
applyEquality, 
inlFormation, 
addLevel, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
productEquality, 
levelHypothesis, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  (irrational(rsqrt(r(n)))  \mvee{}  (\mexists{}m:\mBbbN{}n  +  1.  ((m  *  m)  =  n)))
Date html generated:
2017_10_03-AM-11_59_31
Last ObjectModification:
2017_07_28-AM-08_30_14
Theory : reals
Home
Index