Nuprl Lemma : rv-sep-exists
∀n:{1...}. ∃a,b:ℝ^n. a ≠ b
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
real-vec-sep: a ≠ b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uimplies: b supposing a
, 
real-vec-dist: d(x;y)
, 
real-vec-norm: ||x||
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real-vec-sub: X - Y
, 
dot-product: x⋅y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
eq_int: (i =z j)
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
subtract: n - m
Lemmas referenced : 
int-to-real_wf, 
int_seg_wf, 
ifthenelse_wf, 
eq_int_wf, 
real_wf, 
real-vec-sep_wf, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
exists_wf, 
real-vec_wf, 
int_upper_wf, 
real-vec-dist_wf, 
rless-int, 
rless_functionality, 
req_weakening, 
rsqrt_wf, 
dot-product-nonneg, 
real-vec-sub_wf, 
dot-product_wf, 
rleq_wf, 
req_wf, 
rleq-int, 
rsqrt1, 
req_functionality, 
rsqrt_functionality, 
rsum_wf, 
subtract_wf, 
rmul_wf, 
rsub_wf, 
radd_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rsum-split-first, 
rsum_functionality, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
uiff_transitivity, 
rmul_functionality, 
rsub-int, 
rmul-int, 
radd_functionality, 
rsum-constant, 
rmul-zero-both, 
radd_comm, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
sqequalRule, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
setEquality, 
productEquality, 
addEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
multiplyEquality
Latex:
\mforall{}n:\{1...\}.  \mexists{}a,b:\mBbbR{}\^{}n.  a  \mneq{}  b
Date html generated:
2017_10_03-AM-11_15_23
Last ObjectModification:
2017_03_07-PM-00_02_21
Theory : reals
Home
Index