Nuprl Lemma : rv-sep-exists

n:{1...}. ∃a,b:ℝ^n. a ≠ b


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T real-vec: ^n uall: [x:A]. B[x] int_upper: {i...} int_seg: {i..j-} prop: subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] real-vec-sep: a ≠ b iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T true: True uimplies: supposing a real-vec-dist: d(x;y) real-vec-norm: ||x|| uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) real-vec-sub: Y dot-product: x⋅y bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top eq_int: (i =z j) pointwise-req: x[k] y[k] for k ∈ [n,m] subtract: m
Lemmas referenced :  int-to-real_wf int_seg_wf ifthenelse_wf eq_int_wf real_wf real-vec-sep_wf int_upper_subtype_nat false_wf le_wf exists_wf real-vec_wf int_upper_wf real-vec-dist_wf rless-int rless_functionality req_weakening rsqrt_wf dot-product-nonneg real-vec-sub_wf dot-product_wf rleq_wf req_wf rleq-int rsqrt1 req_functionality rsqrt_functionality rsum_wf subtract_wf rmul_wf rsub_wf radd_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf rsum-split-first rsum_functionality intformeq_wf int_formula_prop_eq_lemma uiff_transitivity rmul_functionality rsub-int rmul-int radd_functionality rsum-constant rmul-zero-both radd_comm radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation sqequalRule lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis setElimination rename hypothesisEquality because_Cache applyEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination productElimination independent_functionElimination imageMemberEquality baseClosed independent_isectElimination setEquality productEquality addEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity voidElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll multiplyEquality

Latex:
\mforall{}n:\{1...\}.  \mexists{}a,b:\mBbbR{}\^{}n.  a  \mneq{}  b



Date html generated: 2017_10_03-AM-11_15_23
Last ObjectModification: 2017_03_07-PM-00_02_21

Theory : reals


Home Index