Nuprl Lemma : coW-is-W

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  w ∈ W(A;a.B[a]) supposing coW-wfdd(a.B[a];w)


Proof




Definitions occuring in Statement :  coW-wfdd: coW-wfdd(a.B[a];w) coW: coW(A;a.B[a]) W: W(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  exists: x:A. B[x] not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: pcw-path: Path so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: squash: T implies:  Q all: x:A. B[x] coW: coW(A;a.B[a]) param-W: pW W: W(A;a.B[a]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] true: True top: Top subtract: m sq_stable: SqStable(P) uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) coW-wfdd: coW-wfdd(a.B[a];w) copath-length: copath-length(p) pi1: fst(t) pcw-path-coPath: pcw-path-coPath(n;p) ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt copath-nil: () guard: {T} pcw-pp-barred: Barred(pp) pcw-partial: pcw-partial(path;n) let: let pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 isr: isr(x) assert: b bfalse: ff bool: 𝔹 unit: Unit it: copath: copath(a.B[a];w) copath-extend: copath-extend(q;t) cand: c∧ B
Lemmas referenced :  coW_wf coW-wfdd_wf pcw-partial_wf pcw-pp-barred_wf nat_wf exists_wf squash_wf all_wf pcw-path_wf le_wf false_wf it_wf unit_wf2 pcw-step-agree_wf copathAgree_wf copath-length_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 decidable__le equal_wf pcw-path-copathAgree pcw-path-coPath_wf not_wf set_wf less_than_wf primrec-wf2 decidable__int_equal subtract_wf less-iff-le minus-minus le_weakening2 eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf less_than_transitivity1 le_weakening less_than_irreflexivity bnot_wf pcw-step_wf copath_length_nil_lemma uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal-wf-T-base copath_wf not-equal-2 le_antisymmetry_iff member-less_than
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality functionEquality independent_pairFormation natural_numberEquality rename setElimination because_Cache functionExtensionality universeEquality cumulativity lambdaEquality applyEquality isectElimination extract_by_obid instantiate baseClosed thin imageMemberEquality imageElimination sqequalHypSubstitution hypothesis lambdaFormation hypothesisEquality dependent_set_memberEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution minusEquality voidEquality voidElimination unionElimination addEquality intEquality productElimination independent_functionElimination dependent_functionElimination independent_isectElimination promote_hyp dependent_pairFormation baseApply closedConclusion equalityElimination impliesFunctionality independent_pairEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    w  \mmember{}  W(A;a.B[a])  supposing  coW-wfdd(a.B[a];w)



Date html generated: 2019_06_20-PM-00_57_40
Last ObjectModification: 2019_01_02-PM-01_34_20

Theory : co-recursion-2


Home Index