Nuprl Lemma : stump'-inductive
∀T:Type. ∀t:wfd-tree(T).
  (stump'(t)
  = wfd-tree-rec(λn,s. (n =z 0);r.λn,s. if (n =z 0) then ff else r (s 0) (n - 1) (λi.(s (i + 1))) fi t)
  ∈ (n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹))
Proof
Definitions occuring in Statement : 
stump': stump'(t)
, 
wfd-tree-rec: wfd-tree-rec(b;r.F[r];t)
, 
wfd-tree: wfd-tree(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
so_apply: x[s]
, 
stump': stump'(t)
, 
stump: stump(t)
, 
empty-wfd-tree: empty-wfd-tree(t)
, 
band: p ∧b q
, 
wfd-tree-rec: wfd-tree-rec(b;r.F[r];t)
, 
W-rec: W-rec(a,f,r.F[a; f; r];w)
, 
Wsup: Wsup(a;b)
, 
less_than: a < b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
wfd-tree-induction, 
equal_wf, 
nat_wf, 
int_seg_wf, 
bool_wf, 
stump'_wf, 
wfd-tree-rec_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
bfalse_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
nat_properties, 
nequal-le-implies, 
zero-add, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel, 
lelt_wf, 
subtract_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-one-mul, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-member-int_seg2, 
add-zero, 
le-add-cancel2, 
wfd-tree_wf, 
all_wf, 
wfd_tree_rec_leaf_lemma, 
btrue_wf, 
wfd_tree_rec_node_lemma, 
int_subtype_base, 
stump-nil, 
le_antisymmetry_iff, 
minus-zero, 
le-add-cancel-alt, 
less_than_transitivity1, 
less_than_irreflexivity, 
bnot_wf, 
stump_wf, 
not-equal-2, 
less-iff-le, 
int_upper_wf, 
empty-wfd-tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
cumulativity, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
voidElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
functionExtensionality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
minusEquality, 
universeEquality, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).
    (stump'(t)
    =  wfd-tree-rec(\mlambda{}n,s.  (n  =\msubz{}  0);r.\mlambda{}n,s.  if  (n  =\msubz{}  0)  then  ff  else  r  (s  0)  (n  -  1)  (\mlambda{}i.(s  (i  +  1)))  fi\000C  ;t))
Date html generated:
2017_04_14-AM-07_45_37
Last ObjectModification:
2017_02_27-PM-03_16_57
Theory : co-recursion
Home
Index