Nuprl Lemma : fan-bar-sep
∀[T:Type]. (Fan(T) ⇒ (∃size:ℕ. T ~ ℕsize) ⇒ BarSep(T;T))
Proof
Definitions occuring in Statement : 
altbarsep: BarSep(T;S), 
altfan: Fan(T), 
equipollent: A ~ B, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
remainder: n rem m, 
eq_int: (i =z j), 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
sq_stable: SqStable(P), 
altubar: uniformBar(X), 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
altjbar: jbar(X;Y), 
so_apply: x[s], 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
less_than: a < b, 
nat_plus: ℕ+, 
altfan: Fan(T), 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
lelt: i ≤ j < k, 
ge: i ≥ j , 
int_seg: {i..j-}, 
surject: Surj(A;B;f), 
biject: Bij(A;B;f), 
equipollent: A ~ B, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
not: ¬A, 
rev_implies: P ⇐ Q, 
true: True, 
squash: ↓T, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
altbar: bar(X), 
prop: ℙ, 
guard: {T}, 
sq_type: SQType(T), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
nat: ℕ, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
altbarsep: BarSep(T;S), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rem_invariant, 
equal_wf, 
less_than_wf, 
iff_weakening_uiff, 
div-cancel2, 
rem-exact, 
multiply-is-int-iff, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
div_bounds_1, 
assert_of_lt_int, 
lt_int_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
remainder_wfa, 
exp_wf4, 
not-all-finite, 
decidable__assert, 
decidable__exists_int_seg, 
le_weakening2, 
sq_stable__le, 
int_seg_subtype, 
assert_wf, 
exists_wf, 
decidable__all_fun, 
ext-eq_weakening, 
equipollent_weakening_ext-eq, 
function_functionality_wrt_equipollent_right, 
equipollent_functionality_wrt_equipollent, 
equipollent_inversion, 
equipollent_functionality_wrt_equipollent2, 
equipollent_same, 
exp_wf2, 
false_wf, 
add-is-int-iff, 
add_nat_wf, 
equipollent-exp, 
subtype_rel_self, 
nat_wf, 
subtype_rel_function, 
istype-assert, 
assert-b-exists, 
assert_of_bor, 
div-cancel3, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
int_seg_properties, 
rem_bounds_1, 
div_rem_sum, 
istype-false, 
nequal_wf, 
divide_wfa, 
int_seg_subtype_nat, 
divide_wf, 
b-exists_wf, 
bor_wf, 
istype-less_than, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
altbar_wf, 
istype-le, 
istype-void, 
iff_weakening_equal, 
istype-int, 
true_wf, 
squash_wf, 
equipollent-zero, 
istype-universe, 
altfan_wf, 
equipollent_wf, 
istype-nat, 
bool_wf, 
int_seg_wf, 
altjbar_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int
Rules used in proof : 
hyp_replacement, 
functionExtensionality, 
equalityElimination, 
functionEquality, 
baseApply, 
pointwiseFunctionality, 
applyLambdaEquality, 
Error :inrFormation_alt, 
addEquality, 
multiplyEquality, 
sqequalBase, 
Error :equalityIstype, 
closedConclusion, 
promote_hyp, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
voidElimination, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inlFormation_alt, 
universeEquality, 
Error :productIsType, 
sqequalRule, 
Error :functionIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
independent_functionElimination, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (Fan(T)  {}\mRightarrow{}  (\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  BarSep(T;T))
Date html generated:
2019_06_20-PM-02_46_36
Last ObjectModification:
2019_06_06-PM-01_21_50
Theory : fan-theorem
Home
Index