Nuprl Lemma : bigger-int-property2

[L:ℤ List]. ∀[n:ℤ].  (n ≤ bigger-int(n;L))


Proof




Definitions occuring in Statement :  bigger-int: bigger-int(n;L) list: List uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B less_than': less_than'(a;b) less_than: a < b squash: T bigger-int: bigger-int(n;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q int_iseg: {i...j} cand: c∧ B has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt sq_type: SQType(T) bnot: ¬bb
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf bigger-int_wf le_wf length_wf list_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf decidable__assert null_wf list-cases list_accum_nil_lemma nil_wf product_subtype_list null_cons_lemma last-lemma-sq pos_length iff_transitivity not_wf equal-wf-base list_subtype_base int_subtype_base assert_wf bnot_wf assert_of_null iff_weakening_uiff assert_of_bnot firstn_wf length_firstn append_wf cons_wf last_wf itermAdd_wf int_term_value_add_lemma nat_wf length_wf_nat list_accum_append subtype_rel_list top_wf equal_wf list_accum_cons_lemma value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality imageElimination promote_hyp baseClosed impliesFunctionality productEquality addEquality callbyvalueReduce equalityElimination instantiate cumulativity

Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}[n:\mBbbZ{}].    (n  \mleq{}  bigger-int(n;L))



Date html generated: 2017_04_17-AM-07_49_00
Last ObjectModification: 2017_02_27-PM-04_22_45

Theory : list_1


Home Index