Nuprl Lemma : flip-conjugate-rotate
∀[n:ℕ]. ∀[i:ℕn - 1].  ((i, i + 1) = (rot(n)^i o ((0, 1) o rot(n)^n - i)) ∈ (ℕn ⟶ ℕn))
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
rotate: rot(n)
, 
fun_exp: f^n
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
subtract: n - m
, 
compose: f o g
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
sq_type: SQType(T)
, 
flip: (i, j)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
add-member-int_seg2, 
int_seg_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
iterated-rotate, 
int_seg_subtype_nat, 
istype-false, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_base_sq, 
int_subtype_base, 
eq_int_wf, 
equal-wf-base, 
bool_wf, 
set_subtype_base, 
lelt_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal-wf-T-base, 
lt_int_wf, 
ifthenelse_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
equal_wf, 
false_wf, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
assert_of_lt_int, 
le_wf, 
le_int_wf, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
neg_assert_of_eq_int, 
istype-nat, 
add-associates, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add, 
subtract-add-cancel, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
Error :dependent_set_memberEquality_alt, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
Error :universeIsType, 
Error :productIsType, 
because_Cache, 
closedConclusion, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :functionExtensionality_alt, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
axiomEquality, 
Error :isectIsTypeImplies, 
instantiate, 
cumulativity, 
intEquality, 
baseApply, 
baseClosed, 
Error :equalityIstype, 
sqequalBase, 
Error :functionIsType, 
equalityElimination, 
Error :equalityIsType1, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
lambdaFormation, 
impliesFunctionality, 
functionExtensionality, 
hyp_replacement, 
promote_hyp, 
dependent_set_memberEquality, 
addEquality, 
Error :equalityIsType4, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n  -  1].    ((i,  i  +  1)  =  (rot(n)\^{}i  o  ((0,  1)  o  rot(n)\^{}n  -  i)))
Date html generated:
2019_06_20-PM-01_35_56
Last ObjectModification:
2018_11_22-AM-10_00_45
Theory : list_1
Home
Index