Nuprl Lemma : flip-conjugate-rotate

[n:ℕ]. ∀[i:ℕ1].  ((i, 1) (rot(n)^i ((0, 1) rot(n)^n i)) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  flip: (i, j) rotate: rot(n) fun_exp: f^n compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B uiff: uiff(P;Q) guard: {T} subtract: m compose: g le: A ≤ B less_than': less_than'(a;b) sq_type: SQType(T) flip: (i, j) so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-less_than add-member-int_seg2 int_seg_wf subtract_wf int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma iterated-rotate int_seg_subtype_nat istype-false itermAdd_wf int_term_value_add_lemma subtype_base_sq int_subtype_base eq_int_wf equal-wf-base bool_wf set_subtype_base lelt_wf assert_wf bnot_wf not_wf istype-assert uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal-wf-T-base lt_int_wf ifthenelse_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int equal_wf false_wf less_than_wf assert-bnot bool_subtype_base bool_cases_sqequal assert_of_lt_int le_wf le_int_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int neg_assert_of_eq_int istype-nat add-associates minus-one-mul add-swap add-commutes add-mul-special zero-mul zero-add subtract-add-cancel le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution setElimination thin rename Error :dependent_set_memberEquality_alt,  hypothesisEquality productElimination independent_pairFormation hypothesis extract_by_obid isectElimination dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule Error :universeIsType,  Error :productIsType,  because_Cache closedConclusion applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality Error :functionExtensionality_alt,  Error :lambdaFormation_alt,  Error :inhabitedIsType,  axiomEquality Error :isectIsTypeImplies,  instantiate cumulativity intEquality baseApply baseClosed Error :equalityIstype,  sqequalBase Error :functionIsType,  equalityElimination Error :equalityIsType1,  voidEquality isect_memberEquality lambdaEquality dependent_pairFormation lambdaFormation impliesFunctionality functionExtensionality hyp_replacement promote_hyp dependent_set_memberEquality addEquality Error :equalityIsType4,  multiplyEquality minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n  -  1].    ((i,  i  +  1)  =  (rot(n)\^{}i  o  ((0,  1)  o  rot(n)\^{}n  -  i)))



Date html generated: 2019_06_20-PM-01_35_56
Last ObjectModification: 2018_11_22-AM-10_00_45

Theory : list_1


Home Index