Nuprl Lemma : coded-code-seq1
∀[k:ℕ+]. ∀s:ℕk ⟶ ℕ. ∀[n:ℕk]. (coded-seq1(k - 1;code-seq1(k;s);n) = (s n) ∈ ℤ)
Proof
Definitions occuring in Statement :
coded-seq1: coded-seq1(k;x;n)
,
code-seq1: code-seq1(k;s)
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
coded-seq1: coded-seq1(k;x;n)
,
subtract: n - m
,
eq_int: (i =z j)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
nat_plus: ℕ+
,
implies: P
⇒ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
code-seq1: code-seq1(k;s)
,
sq_type: SQType(T)
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
less_than: a < b
,
squash: ↓T
,
true: True
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
coded-pair: coded-pair(m)
,
tsqrt: tsqrt(n)
,
isqrt: isqrt(x)
,
integer-sqrt-ext,
genrec-ap: genrec-ap,
le_int: i ≤z j
,
lt_int: i <z j
,
triangular-num: t(n)
,
nequal: a ≠ b ∈ T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
label: ...$L... t
Lemmas referenced :
int_seg_wf,
nat_wf,
nat_plus_properties,
all_wf,
uall_wf,
equal_wf,
coded-seq1_wf,
subtract_wf,
int_seg_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
subtract-add-cancel,
decidable__lt,
lelt_wf,
code-seq1_wf,
nat_plus_wf,
primrec-wf-nat-plus,
nat_plus_subtype_nat,
primrec1_lemma,
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
intformeq_wf,
int_formula_prop_eq_lemma,
int_seg_subtype,
false_wf,
int_seg_cases,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
add-subtract-cancel,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
primrec-unroll,
lt_int_wf,
assert_of_lt_int,
itermAdd_wf,
int_term_value_add_lemma,
less_than_wf,
squash_wf,
true_wf,
coded-code-pair,
subtype_rel_function,
not-le-2,
not-equal-2,
condition-implies-le,
minus-add,
minus-one-mul,
add-swap,
minus-one-mul-top,
add-mul-special,
zero-mul,
add-zero,
add-associates,
add-commutes,
le-add-cancel,
subtype_rel_self,
nat_properties,
iff_weakening_equal,
integer-sqrt-ext
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
hypothesis,
functionEquality,
rename,
hypothesisEquality,
setElimination,
addEquality,
lambdaEquality,
because_Cache,
intEquality,
dependent_set_memberEquality,
productElimination,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
functionExtensionality,
applyEquality,
axiomEquality,
instantiate,
cumulativity,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed,
hypothesis_subsumption,
equalityElimination,
promote_hyp,
imageElimination,
universeEquality,
spreadEquality,
minusEquality,
multiplyEquality
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}]. \mforall{}s:\mBbbN{}k {}\mrightarrow{} \mBbbN{}. \mforall{}[n:\mBbbN{}k]. (coded-seq1(k - 1;code-seq1(k;s);n) = (s n))
Date html generated:
2019_06_20-PM-02_39_58
Last ObjectModification:
2019_06_12-PM-00_28_05
Theory : num_thy_1
Home
Index