Nuprl Lemma : WfdSpread-induction
∀[Pos:Type]
  ((∀a,b:Pos.  Dec(a = b ∈ Pos))
  
⇒ (∀[Mv:Pos ⟶ Type]. ∀[P:WfdSpread(Pos;a.Mv[a]) ⟶ ℙ].
        ((∀a:Pos. ∀f:Mv[a] ⟶ WfdSpread(Pos;a.Mv[a]).  ((∀m:Mv[a]. P[f m]) 
⇒ P[mkW(a;f)]))
        
⇒ (∀w:WfdSpread(Pos;a.Mv[a]). P[w]))))
Proof
Definitions occuring in Statement : 
mkW: mkW(a;f)
, 
WfdSpread: WfdSpread(Pos;a.Mv[a])
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
squash: ↓T
, 
W_sel: W_sel(w;n;s)
, 
subgame: subgame(g;p;n)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
isr: isr(x)
, 
assert: ↑b
, 
bfalse: ff
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
mkW: mkW(a;f)
, 
MoveChoice: MoveChoice(Pos;a.Mv[a])
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
seq-adjoin: s++t
, 
seq-append: seq-append(n;m;s1;s2)
, 
deq: EqDecider(T)
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
isl: isl(x)
, 
WfdSpread: WfdSpread(Pos;a.Mv[a])
, 
resigned: resigned(x)
Lemmas referenced : 
basic_bar_induction, 
MoveChoice_wf, 
assert_wf, 
isr_wf, 
WfdSpread_wf, 
unit_wf2, 
W_sel_wf, 
int_seg_wf, 
nat_wf, 
true_wf, 
equal_wf, 
decidable__assert, 
all_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
seq-adjoin_wf, 
mkW_wf, 
decidable_wf, 
false_wf, 
deq-exists, 
WfdSpread-ext, 
subtype_rel_weakening, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
subtype_rel-equal, 
and_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
decidable-equal-deq, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
member_wf, 
eq_int_wf, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
neg_assert_of_eq_int, 
bnot_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
top_wf, 
lelt_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
add-member-int_seg2, 
squash_wf, 
subtract-add-cancel, 
add-subtract-cancel, 
decidable__equal_int, 
lt_int_wf, 
assert_of_lt_int, 
int_seg_properties, 
btrue_wf, 
isl_wf, 
bfalse_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
cumulativity, 
functionExtensionality, 
dependent_set_memberEquality, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
promote_hyp, 
productEquality, 
inlEquality, 
equalityElimination, 
applyLambdaEquality, 
instantiate, 
inrEquality, 
hyp_replacement, 
intWeakElimination, 
axiomEquality, 
lessCases, 
axiomSqEquality, 
impliesFunctionality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[Pos:Type]
    ((\mforall{}a,b:Pos.    Dec(a  =  b))
    {}\mRightarrow{}  (\mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[P:WfdSpread(Pos;a.Mv[a])  {}\mrightarrow{}  \mBbbP{}].
                ((\mforall{}a:Pos.  \mforall{}f:Mv[a]  {}\mrightarrow{}  WfdSpread(Pos;a.Mv[a]).    ((\mforall{}m:Mv[a].  P[f  m])  {}\mRightarrow{}  P[mkW(a;f)]))
                {}\mRightarrow{}  (\mforall{}w:WfdSpread(Pos;a.Mv[a]).  P[w]))))
Date html generated:
2019_06_20-PM-02_03_04
Last ObjectModification:
2018_08_21-PM-01_57_51
Theory : spread
Home
Index