Nuprl Lemma : tuple_wf

[L:Type List]. ∀[F:i:ℕ||L|| ⟶ L[i]]. ∀[n:{n:ℤ||L|| ∈ ℤ].  (tuple(n;i.F[i]) ∈ tuple-type(L))


Proof




Definitions occuring in Statement :  tuple: tuple(n;i.F[i]) tuple-type: tuple-type(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} tuple: tuple(n;i.F[i]) nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) decidable: Dec(P) less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) nat_plus: + true: True uiff: uiff(P;Q) assert: b btrue: tt subtract: m eq_int: (i =z j) bool: 𝔹 unit: Unit bnot: ¬bb compose: g nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq int_subtype_base nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf length_wf select_wf int_seg_properties intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases length_of_nil_lemma stuck-spread base_wf tupletype_nil_lemma map_nil_lemma list_ind_nil_lemma it_wf product_subtype_list spread_cons_lemma itermAdd_wf int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf decidable__lt subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_subtype_base decidable__equal_int length_of_cons_lemma tupletype_cons_lemma upto_decomp2 add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties add-is-int-iff false_wf map_cons_lemma list_ind_cons_lemma cons_wf non_neg_length set_wf equal-wf-base-T null-map null-upto decidable__assert null_wf null_nil_lemma lelt_wf null_cons_lemma bool_wf eqtt_to_assert assert_of_null eq_int_wf assert_of_eq_int btrue_wf not_assert_elim and_wf btrue_neq_bfalse eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int map-map nil_wf add-subtract-cancel add-member-int_seg2 subtype_rel-equal select-cons-tl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation sqequalRule intWeakElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality functionEquality productElimination universeEquality because_Cache applyLambdaEquality applyEquality unionElimination baseClosed promote_hyp hypothesis_subsumption dependent_set_memberEquality addEquality imageElimination imageMemberEquality pointwiseFunctionality baseApply closedConclusion functionExtensionality equalityElimination independent_pairEquality

Latex:
\mforall{}[L:Type  List].  \mforall{}[F:i:\mBbbN{}||L||  {}\mrightarrow{}  L[i]].  \mforall{}[n:\{n:\mBbbZ{}|  n  =  ||L||\}  ].    (tuple(n;i.F[i])  \mmember{}  tuple-type(L))



Date html generated: 2017_04_17-AM-09_29_13
Last ObjectModification: 2017_02_27-PM-05_29_50

Theory : tuples


Home Index