Nuprl Lemma : cpsquicksort_wf

[T,A:Type]. ∀[cmp:comparison(T)].  ∀L:T List. ∀[k:(T List) ⟶ A]. (cpsquicksort(cmp;L;k) ∈ A)


Proof




Definitions occuring in Statement :  cpsquicksort: cpsquicksort(cmp;L;k) comparison: comparison(T) list: List uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T cpsquicksort: cpsquicksort(cmp;L;k) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b cons: [a b] iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True listp: List+ let: let comparison: comparison(T) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] equiv_rel: EquivRel(T;x,y.E[x; y]) lt_int: i <j refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf le_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf null_wf3 subtype_rel_list top_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base itermAdd_wf int_term_value_add_lemma nat_wf length_wf_nat comparison_wf hd_wf listp_properties list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel filter_wf5 lt_int_wf l_member_wf eq_int_wf length-filter-decreases l_exists_iff not_wf assert_wf hd_member int_subtype_base comparison-equiv append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality imageElimination equalityElimination functionExtensionality promote_hyp instantiate baseClosed addEquality universeEquality minusEquality setEquality hyp_replacement addLevel impliesFunctionality productEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[cmp:comparison(T)].    \mforall{}L:T  List.  \mforall{}[k:(T  List)  {}\mrightarrow{}  A].  (cpsquicksort(cmp;L;k)  \mmember{}  A)



Date html generated: 2018_05_21-PM-07_34_48
Last ObjectModification: 2017_07_26-PM-05_09_03

Theory : general


Home Index