Nuprl Lemma : do-apply-p-first-disjoint
∀[A,B:Type]. ∀[L:(A ⟶ (B + Top)) List]. ∀[x:A].
  ∀[f:A ⟶ (B + Top)]. (do-apply(p-first(L);x) = do-apply(f;x) ∈ B) supposing ((↑can-apply(f;x)) and (f ∈ L)) 
  supposing (∀f,g∈L.  p-disjoint(A;f;g))
Proof
Definitions occuring in Statement : 
p-disjoint: p-disjoint(A;f;g)
, 
p-first: p-first(L)
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
l_exists: (∃x∈L. P[x])
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
cons: [a / b]
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
less_than': less_than'(a;b)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
select: L[n]
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
p-disjoint: p-disjoint(A;f;g)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
do-apply-p-first, 
do-apply_wf, 
iff_weakening_equal, 
assert_wf, 
can-apply_wf, 
subtype_rel_union, 
top_wf, 
l_member_wf, 
pairwise_wf2, 
subtype_rel_list, 
subtype_rel_dep_function, 
p-disjoint_wf, 
list_wf, 
can-apply-p-first, 
lelt_wf, 
length_wf, 
and_wf, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
list-cases, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
filter_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
all_wf, 
int_seg_wf, 
cons_wf, 
filter_cons_lemma, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
reduce_hd_cons_lemma, 
false_wf, 
length_of_cons_lemma, 
pairwise-cons, 
cons_member, 
not_assert_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
independent_isectElimination, 
cumulativity, 
functionExtensionality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
functionEquality, 
unionEquality, 
instantiate, 
lambdaFormation, 
dependent_functionElimination, 
dependent_pairFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
intWeakElimination, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
equalityElimination, 
hyp_replacement, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:(A  {}\mrightarrow{}  (B  +  Top))  List].  \mforall{}[x:A].
    \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)]
        (do-apply(p-first(L);x)  =  do-apply(f;x))  supposing  ((\muparrow{}can-apply(f;x))  and  (f  \mmember{}  L)) 
    supposing  (\mforall{}f,g\mmember{}L.    p-disjoint(A;f;g))
Date html generated:
2018_05_21-PM-06_50_10
Last ObjectModification:
2017_07_26-PM-04_57_18
Theory : general
Home
Index