Nuprl Lemma : exp-ratio-property

a:ℕ. ∀b:{a 1...}. ∀k:ℕ.  (exp-ratio(a;b;0;k;1) ∈ {n:ℕa^n < b^n} )


Proof




Definitions occuring in Statement :  exp-ratio: exp-ratio(a;b;n;p;q) exp: i^n int_upper: {i...} nat: less_than: a < b all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + implies:  Q prop: guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] subtract: m le: A ≤ B less_than': less_than'(a;b) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) cand: c∧ B sq_type: SQType(T) less_than: a < b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  mul-one exp-ratio_wf mul_bounds_1b subtract-add-cancel le_weakening less_than_functionality minus-zero not-equal-2 mul_nat_plus le-add-cancel zero-add add-zero add_functionality_wrt_le minus-one-mul-top minus-one-mul minus-add condition-implies-le not-lt-2 exp_wf_nat_plus decidable__lt exp-zero less_than_wf decidable__equal_int int_subtype_base subtype_base_sq mul_bounds_1a add-swap add-commutes one-mul mul-swap mul-commutes add-associates mul-associates mul-distributes mul-distributes-right int_formula_prop_eq_lemma int_term_value_mul_lemma intformeq_wf itermMultiply_wf multiply-is-int-iff add-is-int-iff multiply_nat_wf exp_wf4 add_nat_wf int_upper_subtype_nat mul_preserves_le exp_add add-subtract-cancel iff_weakening_equal exp1 add_functionality_wrt_eq true_wf squash_wf int_term_value_add_lemma itermAdd_wf false_wf exp0_lemma nat_plus_wf nat_plus_subtype_nat primrec-wf-nat-plus int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_upper_properties nat_properties exp_wf2 le_wf nat_plus_properties int_upper_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin addEquality setElimination rename hypothesisEquality natural_numberEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll multiplyEquality because_Cache applyEquality introduction imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination setEquality pointwiseFunctionality promote_hyp baseApply closedConclusion equalityEquality minusEquality instantiate cumulativity

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}k:\mBbbN{}.    (exp-ratio(a;b;0;k;1)  \mmember{}  \{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  )



Date html generated: 2016_05_15-PM-04_07_57
Last ObjectModification: 2016_01_16-AM-11_07_12

Theory : general


Home Index