Nuprl Lemma : exp-ratio-property
∀a:ℕ. ∀b:{a + 1...}. ∀k:ℕ.  (exp-ratio(a;b;0;k;1) ∈ {n:ℕ| k * a^n < b^n} )
Proof
Definitions occuring in Statement : 
exp-ratio: exp-ratio(a;b;n;p;q)
, 
exp: i^n
, 
int_upper: {i...}
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
mul-one, 
exp-ratio_wf, 
mul_bounds_1b, 
subtract-add-cancel, 
le_weakening, 
less_than_functionality, 
minus-zero, 
not-equal-2, 
mul_nat_plus, 
le-add-cancel, 
zero-add, 
add-zero, 
add_functionality_wrt_le, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
exp_wf_nat_plus, 
decidable__lt, 
exp-zero, 
less_than_wf, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
mul_bounds_1a, 
add-swap, 
add-commutes, 
one-mul, 
mul-swap, 
mul-commutes, 
add-associates, 
mul-associates, 
mul-distributes, 
mul-distributes-right, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
intformeq_wf, 
itermMultiply_wf, 
multiply-is-int-iff, 
add-is-int-iff, 
multiply_nat_wf, 
exp_wf4, 
add_nat_wf, 
int_upper_subtype_nat, 
mul_preserves_le, 
exp_add, 
add-subtract-cancel, 
iff_weakening_equal, 
exp1, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
false_wf, 
exp0_lemma, 
nat_plus_wf, 
nat_plus_subtype_nat, 
primrec-wf-nat-plus, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_upper_properties, 
nat_properties, 
exp_wf2, 
le_wf, 
nat_plus_properties, 
int_upper_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
multiplyEquality, 
because_Cache, 
applyEquality, 
introduction, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
setEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
equalityEquality, 
minusEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}k:\mBbbN{}.    (exp-ratio(a;b;0;k;1)  \mmember{}  \{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  )
Date html generated:
2016_05_15-PM-04_07_57
Last ObjectModification:
2016_01_16-AM-11_07_12
Theory : general
Home
Index