Nuprl Lemma : isqrt_newton_wf
∀n,x:ℕ+.  isqrt_newton(n;x) ∈ ∃r:ℕ [(((r * r) ≤ n) ∧ n < (r + 1) * (r + 1))] supposing n < (x + 1) * (x + 1)
Proof
Definitions occuring in Statement : 
isqrt_newton: isqrt_newton(n;x)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
ge: i ≥ j 
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
isqrt_newton: isqrt_newton(n;x)
, 
nequal: a ≠ b ∈ T 
, 
has-value: (a)↓
, 
less_than: a < b
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
subtract: n - m
, 
sq_exists: ∃x:A [B[x]]
, 
cand: A c∧ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than_wf, 
nat_plus_wf, 
nat_properties, 
ge_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
mul_preserves_eq, 
equal_wf, 
decidable__lt, 
lelt_wf, 
nat_wf, 
div_rem_sum2, 
subtype_rel_sets, 
nequal_wf, 
rem_bounds_1, 
nat_plus_subtype_nat, 
div_bounds_1, 
subtype_base_sq, 
true_wf, 
mul-distributes, 
mul-commutes, 
add-commutes, 
mul_preserves_le, 
minus-one-mul, 
mul-swap, 
mul_cancel_in_lt, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lt_int_wf, 
assert_of_lt_int, 
top_wf, 
square_non_neg, 
multiply-is-int-iff, 
add-is-int-iff, 
mul-distributes-right, 
add-associates, 
mul-associates, 
one-mul, 
two-mul, 
less_than_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
mul_preserves_lt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
extract_by_obid, 
isectElimination, 
multiplyEquality, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
hypothesisEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
intWeakElimination, 
productElimination, 
applyEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
divideEquality, 
baseClosed, 
callbyvalueReduce, 
setEquality, 
addLevel, 
instantiate, 
cumulativity, 
imageElimination, 
imageMemberEquality, 
productEquality, 
lessEquality, 
equalityElimination, 
int_eqReduceTrueSq, 
promote_hyp, 
int_eqReduceFalseSq, 
lessCases, 
sqequalAxiom, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
minusEquality
Latex:
\mforall{}n,x:\mBbbN{}\msupplus{}.
    isqrt\_newton(n;x)  \mmember{}  \mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  n)  \mwedge{}  n  <  (r  +  1)  *  (r  +  1))]  supposing  n  <  (x  +  1)  *  (x  +  1)
Date html generated:
2018_05_21-PM-07_51_49
Last ObjectModification:
2017_07_26-PM-05_29_27
Theory : general
Home
Index