Nuprl Lemma : Moessner-theorem

[x,y:Atom].
  ∀[n:ℕ]. ∀[k:ℕ+].
    (Moessner(ℤ-rng;x;y;1;λi.if (i =z 0) then if (i =z 1) then else fi ;k)[bag-rep(n;x)] k^n ∈ ℤ
  supposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) fps-one: 1 fps-coeff: f[b] bag-rep: bag-rep(n;x) exp: i^n nat_plus: + nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] not: ¬A lambda: λx.A[x] natural_number: $n int: atom: Atom equal: t ∈ T int_ring: -rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} prop: squash: T true: True int_ring: -rng pi1: fst(t) rng_car: |r| nequal: a ≠ b ∈  top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nat_plus: + integ_dom: IntegDom{i} rev_implies:  Q iff: ⇐⇒ Q lelt: i ≤ j < k so_apply: x[s] int_seg: {i..j-} so_lambda: λ2x.t[x] int-prod: Π(f[x] x < k) eq_int: (i =z j) subtract: m
Lemmas referenced :  KozenSilva-corollary2 eq_int_wf eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nat_properties nequal-le-implies zero-add le_wf nat_plus_subtype_nat equal_wf squash_wf true_wf istype-universe nat_plus_wf nat_wf atom_subtype_base istype-void istype-atom subtype_rel_self bag-rep_wf int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_and_lemma itermSubtract_wf itermVar_wf intformand_wf subtract_wf false_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int nat_plus_properties assert_of_eq_int eqtt_to_assert fps-one_wf Moessner_wf integ_dom_wf int_ring_wf crng_wf power-series_wf bag_wf fps-coeff_wf and_wf iff_weakening_equal btrue_wf eq_int_eq_true int_formula_prop_le_lemma intformle_wf decidable__le equal-wf-T-base not_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_seg_wf ifthenelse_wf singleton_support_sum int-prod-split exp_wf2 exp0_lemma itermAdd_wf istype-int int_term_value_add_lemma istype-less_than primrec1_lemma minus-zero one-mul add-zero primrec0_lemma less_than_wf ge_wf int_term_value_mul_lemma itermMultiply_wf subtract-add-cancel assert_of_lt_int lt_int_wf primrec-unroll
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaEquality_alt setElimination rename because_Cache closedConclusion natural_numberEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination sqequalRule productElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType4 baseApply baseClosed applyEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination hypothesis_subsumption independent_pairFormation dependent_set_memberEquality_alt universeIsType equalityIsType1 hyp_replacement imageElimination universeEquality intEquality imageMemberEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies functionIsType int_eqEquality dependent_set_memberEquality voidEquality isect_memberEquality dependent_pairFormation approximateComputation lambdaFormation functionExtensionality atomEquality lambdaEquality applyLambdaEquality addEquality productIsType intWeakElimination

Latex:
\mforall{}[x,y:Atom].
    \mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
        (Moessner(\mBbbZ{}-rng;x;y;1;\mlambda{}i.if  (i  =\msubz{}  0)  then  0
                                                          if  (i  =\msubz{}  1)  then  n
                                                          else  0
                                                          fi  ;k)[bag-rep(n;x)]
        =  k\^{}n) 
    supposing  \mneg{}(x  =  y)



Date html generated: 2019_10_16-AM-11_37_07
Last ObjectModification: 2018_10_16-PM-03_15_16

Theory : power!series


Home Index