Nuprl Lemma : Moessner-theorem
∀[x,y:Atom].
∀[n:ℕ]. ∀[k:ℕ+].
(Moessner(ℤ-rng;x;y;1;λi.if (i =z 0) then 0 if (i =z 1) then n else 0 fi ;k)[bag-rep(n;x)] = k^n ∈ ℤ)
supposing ¬(x = y ∈ Atom)
Proof
Definitions occuring in Statement :
Moessner: Moessner(r;x;y;h;d;k)
,
fps-one: 1
,
fps-coeff: f[b]
,
bag-rep: bag-rep(n;x)
,
exp: i^n
,
nat_plus: ℕ+
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
lambda: λx.A[x]
,
natural_number: $n
,
int: ℤ
,
atom: Atom
,
equal: s = t ∈ T
,
int_ring: ℤ-rng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
,
ge: i ≥ j
,
int_upper: {i...}
,
prop: ℙ
,
squash: ↓T
,
true: True
,
int_ring: ℤ-rng
,
pi1: fst(t)
,
rng_car: |r|
,
nequal: a ≠ b ∈ T
,
top: Top
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
decidable: Dec(P)
,
nat_plus: ℕ+
,
integ_dom: IntegDom{i}
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
lelt: i ≤ j < k
,
so_apply: x[s]
,
int_seg: {i..j-}
,
so_lambda: λ2x.t[x]
,
int-prod: Π(f[x] | x < k)
,
eq_int: (i =z j)
,
subtract: n - m
Lemmas referenced :
KozenSilva-corollary2,
eq_int_wf,
eqff_to_assert,
int_subtype_base,
bool_subtype_base,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
assert-bnot,
neg_assert_of_eq_int,
upper_subtype_nat,
istype-false,
nat_properties,
nequal-le-implies,
zero-add,
le_wf,
nat_plus_subtype_nat,
equal_wf,
squash_wf,
true_wf,
istype-universe,
nat_plus_wf,
nat_wf,
atom_subtype_base,
istype-void,
istype-atom,
subtype_rel_self,
bag-rep_wf,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_and_lemma,
itermSubtract_wf,
itermVar_wf,
intformand_wf,
subtract_wf,
false_wf,
int_formula_prop_wf,
int_term_value_constant_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
itermConstant_wf,
intformeq_wf,
intformnot_wf,
full-omega-unsat,
decidable__equal_int,
nat_plus_properties,
assert_of_eq_int,
eqtt_to_assert,
fps-one_wf,
Moessner_wf,
integ_dom_wf,
int_ring_wf,
crng_wf,
power-series_wf,
bag_wf,
fps-coeff_wf,
and_wf,
iff_weakening_equal,
btrue_wf,
eq_int_eq_true,
int_formula_prop_le_lemma,
intformle_wf,
decidable__le,
equal-wf-T-base,
not_wf,
lelt_wf,
int_formula_prop_less_lemma,
intformless_wf,
decidable__lt,
int_seg_wf,
ifthenelse_wf,
singleton_support_sum,
int-prod-split,
exp_wf2,
exp0_lemma,
itermAdd_wf,
istype-int,
int_term_value_add_lemma,
istype-less_than,
primrec1_lemma,
minus-zero,
one-mul,
add-zero,
primrec0_lemma,
less_than_wf,
ge_wf,
int_term_value_mul_lemma,
itermMultiply_wf,
subtract-add-cancel,
assert_of_lt_int,
lt_int_wf,
primrec-unroll
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_isectElimination,
lambdaEquality_alt,
setElimination,
rename,
because_Cache,
closedConclusion,
natural_numberEquality,
inhabitedIsType,
lambdaFormation_alt,
unionElimination,
equalityElimination,
sqequalRule,
productElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation_alt,
equalityIsType4,
baseApply,
baseClosed,
applyEquality,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
hypothesis_subsumption,
independent_pairFormation,
dependent_set_memberEquality_alt,
universeIsType,
equalityIsType1,
hyp_replacement,
imageElimination,
universeEquality,
intEquality,
imageMemberEquality,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
functionIsType,
int_eqEquality,
dependent_set_memberEquality,
voidEquality,
isect_memberEquality,
dependent_pairFormation,
approximateComputation,
lambdaFormation,
functionExtensionality,
atomEquality,
lambdaEquality,
applyLambdaEquality,
addEquality,
productIsType,
intWeakElimination
Latex:
\mforall{}[x,y:Atom].
\mforall{}[n:\mBbbN{}]. \mforall{}[k:\mBbbN{}\msupplus{}].
(Moessner(\mBbbZ{}-rng;x;y;1;\mlambda{}i.if (i =\msubz{} 0) then 0
if (i =\msubz{} 1) then n
else 0
fi ;k)[bag-rep(n;x)]
= k\^{}n)
supposing \mneg{}(x = y)
Date html generated:
2019_10_16-AM-11_37_07
Last ObjectModification:
2018_10_16-PM-03_15_16
Theory : power!series
Home
Index