Nuprl Lemma : qabs-difference-qmax
∀[a,b,c,d:ℚ].  (|qmax(a;b) - qmax(c;d)| ≤ qmax(|a - c|;|b - d|))
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qmax: qmax(x;y)
, 
qle: r ≤ s
, 
qsub: r - s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
qmax: qmax(x;y)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
true: True
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
squash: ↓T
, 
qabs: |r|
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
qsub: r - s
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_uimplies: rev_uimplies(P;Q)
, 
evalall: evalall(t)
, 
qpositive: qpositive(r)
, 
lt_int: i <z j
, 
qmul: r * s
, 
decidable: Dec(P)
Lemmas referenced : 
qle_wf, 
rationals_wf, 
q_le_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
qabs_wf, 
qsub_wf, 
qle_weakening_eq_qorder, 
bnot_wf, 
not_wf, 
qle_complement_qorder, 
qle_weakening_lt_qorder, 
uiff_transitivity2, 
eqtt_to_assert, 
assert-q_le-eq, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
equal_wf, 
qle_antisymmetry, 
valueall-type-has-valueall, 
rationals-valueall-type, 
evalall-reduce, 
qpositive_wf, 
qless_wf, 
int-subtype-rationals, 
qless_complement_qorder, 
assert-qpositive, 
iff_transitivity, 
iff_weakening_uiff, 
qadd_preserves_qless, 
qmul_wf, 
qadd_wf, 
qadd_preserves_qle, 
qadd_comm_q, 
qadd_ac_1_q, 
qinverse_q, 
mon_ident_q, 
iff_weakening_equal, 
qless_transitivity_2_qorder, 
qless_irreflexivity, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
qless_transitivity, 
qless_transitivity_1_qorder, 
qle_transitivity_qorder, 
qmul_over_plus_qrng, 
qinv_inv_q, 
mon_assoc_q, 
qadd_inv_assoc_q, 
zero-qle-qabs, 
decidable__qle, 
qmax_wf, 
qle_witness, 
qmax_lb, 
qmax-symmetry, 
qmax_strict_lb, 
qabs-qminus, 
qminus-qsub
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
dependent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
callbyvalueReduce, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality, 
minusEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
isect_memberFormation, 
isect_memberEquality, 
productEquality
Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (|qmax(a;b)  -  qmax(c;d)|  \mleq{}  qmax(|a  -  c|;|b  -  d|))
Date html generated:
2018_05_21-PM-11_57_52
Last ObjectModification:
2017_07_26-PM-06_47_44
Theory : rationals
Home
Index