Nuprl Lemma : qabs-difference-qmax

[a,b,c,d:ℚ].  (|qmax(a;b) qmax(c;d)| ≤ qmax(|a c|;|b d|))


Proof




Definitions occuring in Statement :  qabs: |r| qmax: qmax(x;y) qle: r ≤ s qsub: s rationals: uall: [x:A]. B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q qmax: qmax(x;y) member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a true: True uiff: uiff(P;Q) and: P ∧ Q guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff squash: T qabs: |r| callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) subtype_rel: A ⊆B not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q qsub: s exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q) evalall: evalall(t) qpositive: qpositive(r) lt_int: i <j qmul: s decidable: Dec(P)
Lemmas referenced :  qle_wf rationals_wf q_le_wf bool_wf equal-wf-T-base assert_wf qabs_wf qsub_wf qle_weakening_eq_qorder bnot_wf not_wf qle_complement_qorder qle_weakening_lt_qorder uiff_transitivity2 eqtt_to_assert assert-q_le-eq uiff_transitivity eqff_to_assert assert_of_bnot squash_wf true_wf equal_wf qle_antisymmetry valueall-type-has-valueall rationals-valueall-type evalall-reduce qpositive_wf qless_wf int-subtype-rationals qless_complement_qorder assert-qpositive iff_transitivity iff_weakening_uiff qadd_preserves_qless qmul_wf qadd_wf qadd_preserves_qle qadd_comm_q qadd_ac_1_q qinverse_q mon_ident_q iff_weakening_equal qless_transitivity_2_qorder qless_irreflexivity bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot qless_transitivity qless_transitivity_1_qorder qle_transitivity_qorder qmul_over_plus_qrng qinv_inv_q mon_assoc_q qadd_inv_assoc_q zero-qle-qabs decidable__qle qmax_wf qle_witness qmax_lb qmax-symmetry qmax_strict_lb qabs-qminus qminus-qsub
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity equalitySymmetry baseClosed because_Cache independent_isectElimination natural_numberEquality productElimination unionElimination equalityElimination independent_functionElimination sqequalRule applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality dependent_functionElimination hyp_replacement applyLambdaEquality callbyvalueReduce voidElimination independent_pairFormation impliesFunctionality minusEquality dependent_pairFormation promote_hyp instantiate cumulativity isect_memberFormation isect_memberEquality productEquality

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (|qmax(a;b)  -  qmax(c;d)|  \mleq{}  qmax(|a  -  c|;|b  -  d|))



Date html generated: 2018_05_21-PM-11_57_52
Last ObjectModification: 2017_07_26-PM-06_47_44

Theory : rationals


Home Index