Nuprl Lemma : qround-property

[k:ℕ+]. ∀[r:ℚ].  |r qround(r;k)| < (1/2 k)


Proof




Definitions occuring in Statement :  qabs: |r| qless: r < s qsub: s qdiv: (r/s) qround: qround(r;k) qmul: s rationals: nat_plus: + uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  decidable: Dec(P) less_than': less_than'(a;b) squash: T less_than: a < b uiff: uiff(P;Q) cand: c∧ B or: P ∨ Q true: True iff: ⇐⇒ Q prop: and: P ∧ Q all: x:A. B[x] false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] guard: {T} rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b rev_uimplies: rev_uimplies(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) eq_int: (i =z j) qsub: s
Lemmas referenced :  istype-less_than rounded-numerator_wf qless_wf int_formula_prop_not_lemma intformnot_wf decidable__lt qless-int qmul-positive qabs-of-positive nat_plus_wf int-equal-in-rationals equal-wf-base iff_weakening_uiff int_subtype_base set_subtype_base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformand_wf full-omega-unsat nat_plus_properties qmul-mul istype-int less_than_wf rationals_wf subtype_rel_set qmul_wf int-subtype-rationals qdiv_wf qround_wf qsub_wf qabs_wf qless_witness squash_wf true_wf qround-eq subtype_rel_self iff_weakening_equal qabs-abs absval_unfold lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot assert_wf itermMinus_wf int_term_value_minus_lemma qmul_preserves_qless qadd_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity qabs-qmul assert-qeq qmul_comm_qrng qadd_comm_q qmul-qdiv-cancel qmul_over_plus_qrng qmul_over_minus_qrng qmul_ac_1_qrng qmul-qdiv-cancel6 rounded-numerator-property qmul_assoc_qrng
Rules used in proof :  dependent_set_memberEquality_alt applyLambdaEquality hyp_replacement minusEquality productIsType unionElimination imageMemberEquality inlFormation_alt isectIsTypeImplies isect_memberEquality_alt inhabitedIsType productElimination multiplyEquality equalityTransitivity because_Cache equalitySymmetry sqequalBase baseClosed baseApply equalityIstype voidElimination universeIsType independent_pairFormation Error :memTop,  dependent_functionElimination int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation lambdaFormation_alt rename setElimination independent_isectElimination lambdaEquality_alt intEquality sqequalRule applyEquality natural_numberEquality closedConclusion hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination instantiate universeEquality equalityElimination lessCases axiomSqEquality promote_hyp cumulativity

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbQ{}].    |r  -  qround(r;k)|  <  (1/2  *  k)



Date html generated: 2020_05_20-AM-09_16_52
Last ObjectModification: 2019_12_13-AM-09_33_28

Theory : rationals


Home Index