Nuprl Lemma : rounded-numerator-property
∀[k:ℕ+]. ∀[r:ℚ].  |(k * r) - rounded-numerator(r;k)| < 1
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qless: r < s, 
qsub: r - s, 
qmul: r * s, 
rounded-numerator: rounded-numerator(r;k), 
rationals: ℚ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
cand: A c∧ B, 
not: ¬A, 
uiff: uiff(P;Q), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
qdiv: (r/s), 
rounded-numerator: rounded-numerator(r;k), 
qmul: r * s, 
qsub: r - s, 
qabs: |r|, 
q_less: q_less(r;s), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
qpositive: qpositive(r), 
qinv: 1/r, 
qadd: r + s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bfalse: ff, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
bor: p ∨bq, 
band: p ∧b q, 
rev_uimplies: rev_uimplies(P;Q), 
less_than: a < b, 
squash: ↓T, 
true: True, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
int_nzero: ℤ-o, 
subtract: n - m, 
decidable: Dec(P), 
nat: ℕ, 
le: A ≤ B, 
int_lower: {...i}, 
gt: i > j, 
ge: i ≥ j 
Lemmas referenced : 
assert-q_less-eq, 
qabs_wf, 
qsub_wf, 
qmul_wf, 
rounded-numerator_wf, 
iff_weakening_equal, 
q-elim, 
nat_plus_properties, 
assert-qeq, 
int-subtype-rationals, 
assert_wf, 
qeq_wf2, 
not_wf, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
q_less_wf, 
qless_witness, 
subtype_rel_set, 
less_than_wf, 
nat_plus_wf, 
valueall-type-has-valueall, 
set-valueall-type, 
int-valueall-type, 
product-valueall-type, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
isint-int, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
intformnot_wf, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
multiply-is-int-iff, 
add-is-int-iff, 
false_wf, 
evalall-reduce, 
mul-associates, 
mul-commutes, 
mul-swap, 
one-mul, 
mul-distributes, 
div_rem_sum, 
nequal_wf, 
div_rem_sum2, 
minus-one-mul, 
add-swap, 
add-associates, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add, 
decidable__le, 
rem_bounds_1, 
mul_bounds_1a, 
nat_plus_subtype_nat, 
le_wf, 
rem_bounds_2, 
le_weakening2, 
neg_mul_arg_bounds, 
decidable__lt, 
intformle_wf, 
int_formula_prop_le_lemma, 
gt_wf, 
itermMinus_wf, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
addLevel, 
impliesFunctionality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
lambdaEquality, 
isect_memberEquality, 
isintReduceTrue, 
callbyvalueReduce, 
sqleReflexivity, 
minusEquality, 
productEquality, 
lambdaFormation, 
independent_pairEquality, 
multiplyEquality, 
divideEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
addEquality, 
unionElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
pointwiseFunctionality, 
imageElimination, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality, 
remainderEquality, 
inrFormation
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbQ{}].    |(k  *  r)  -  rounded-numerator(r;k)|  <  1
Date html generated:
2018_05_21-PM-11_58_06
Last ObjectModification:
2018_05_19-PM-04_04_39
Theory : rationals
Home
Index