Nuprl Lemma : filter-interface-predecessors-first-at

[Info:Type]
  ∀es:EO+(Info)
    ∀[T:Type]
      ∀X:EClass(T). ∀P:E(X) ─→ 𝔹. ∀i:Id.
        ∀[R:Id ─→ E(X) ─→ ℙ]
          ∀n:ℕ+. ∀L:Id List.
            ((∀x∈L.∃y:E(X). (R[x;y] ∧ (↑P[y])))
                (∃e:E(X). ((↑P[e]) ∧ is first@ s.t.  q.||filter(λe.P[e];≤(X)(q))|| n ∈ ℤ))) supposing 
               ((n ≤ ||L||) and 
               no_repeats(Id;L)) 
          supposing ∀x1,x2:Id. ∀y:E(X).  (R[x1;y]  R[x2;y]  (x1 x2 ∈ Id)) 
        supposing ∀e:E(X). loc(e) i ∈ Id supposing ↑P[e]


Proof




Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first-at: is first@ s.t.  e.P[e] es-loc: loc(e) Id: Id l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) filter: filter(P;l) length: ||as|| list: List nat_plus: + assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q lambda: λx.A[x] function: x:A ─→ B[x] int: universe: Type equal: t ∈ T
Lemmas :  Id_wf assert_elim subtype_base_sq bool_wf bool_subtype_base iff_weakening_equal sq_stable__le length_wf es-E-interface_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf es-loc_wf filter_wf5 es-interface-predecessors_wf l_member_wf set_wf le_transitivity le_wf filter_type subtype_rel_list assert_wf subtype_rel_sets equal_wf and_wf es-causl-swellfnd less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties nat_wf zero-le-nat lelt_wf es-causl_wf all_wf int_seg_subtype-nat exists_wf decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel less_than_wf primrec-wf2 decidable__le not-le-2 add-zero add-mul-special zero-mul es-interface-predecessors-general-step list_wf true_wf squash_wf assert_of_bnot eqff_to_assert eqtt_to_assert bool_cases subtype_top es-prior-interface_wf1 in-eclass_wf es-loc-prior-interface es-prior-interface-causl es-prior-interface_wf eclass-val_wf2 length_append append_wf length_wf_nat length_wf_nil nil_wf non_neg_length length_nil filter_nil_lemma filter_cons_lemma filter_append_sq cons_wf length_cons length-append le_weakening2 less_than_transitivity2 le-add-cancel2 length_of_nil_lemma length_of_cons_lemma list_ind_nil_lemma decidable__int_equal es-first-at-exists append-nil es-first-at_wf

Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[T:Type]
            \mforall{}X:EClass(T).  \mforall{}P:E(X)  {}\mrightarrow{}  \mBbbB{}.  \mforall{}i:Id.
                \mforall{}[R:Id  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}]
                    \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}L:Id  List.
                        ((\mforall{}x\mmember{}L.\mexists{}y:E(X).  (R[x;y]  \mwedge{}  (\muparrow{}P[y])))
                              {}\mRightarrow{}  (\mexists{}e:E(X)
                                        ((\muparrow{}P[e])  \mwedge{}  e  is  first@  i  s.t.    q.||filter(\mlambda{}e.P[e];\mleq{}(X)(q))||  =  n)))  supposing 
                              ((n  \mleq{}  ||L||)  and 
                              no\_repeats(Id;L)) 
                    supposing  \mforall{}x1,x2:Id.  \mforall{}y:E(X).    (R[x1;y]  {}\mRightarrow{}  R[x2;y]  {}\mRightarrow{}  (x1  =  x2)) 
                supposing  \mforall{}e:E(X).  loc(e)  =  i  supposing  \muparrow{}P[e]



Date html generated: 2015_07_21-PM-03_41_12
Last ObjectModification: 2015_07_16-AM-09_41_14

Home Index