Nuprl Lemma : cu-filler-cases
∀I:Cname List. ∀J:nameset(I) List. ∀K:Cname List. ∀x:nameset(I). ∀f:name-morph(I-[x];K). ∀i:ℕ2.
∀box:open_box(c𝕌;I;J;x;i).
  ((J ∈ nameset(J) List)
  ∧ (nameset(J) ⊆r nameset(I-[x]))
  ∧ ((∃y:nameset(J) [((y ∈ J) ∧ (↑¬bisname(f y)) ∧ (l-first(y.¬bisname(f y);J) ~ inl y))])
    ∨ (((∀y∈J.¬↑¬bisname(f y)) ∧ (↑isr(l-first(y.¬bisname(f y);J))))
      ∧ (f[x:=fresh-cname(K)] ∈ name-morph(I;[fresh-cname(K) / K]))
      ∧ (nameset([x / J]) ⊆r nameset(I))
      ∧ (∀z:nameset([x / J]). (↑isname(f[x:=fresh-cname(K)] z)))
      ∧ (f[x:=fresh-cname(K)] ∈ nameset([x / J]) ⟶ nameset([fresh-cname(K) / K]))
      ∧ (x ∈ nameset([x / J]))
      ∧ (nameset([x / J]) ⊆r name-morph-domain(f[x:=fresh-cname(K)];I)))))
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
open_box: open_box(X;I;J;x;i)
, 
name-morph-domain: name-morph-domain(f;I)
, 
extend-name-morph: f[z1:=z2]
, 
name-morph: name-morph(I;J)
, 
isname: isname(z)
, 
fresh-cname: fresh-cname(I)
, 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
l-first: l-first(x.f[x];L)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
bnot: ¬bb
, 
assert: ↑b
, 
isr: isr(x)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
guard: {T}
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
coordinate_name: Cname
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
open_box: open_box(X;I;J;x;i)
, 
l_subset: l_subset(T;as;bs)
, 
false: False
, 
name-morph: name-morph(I;J)
, 
or: P ∨ Q
, 
sq_exists: ∃x:A [B[x]]
, 
istype: istype(T)
, 
respects-equality: respects-equality(S;T)
, 
uiff: uiff(P;Q)
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
isr: isr(x)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
extend-name-morph: f[z1:=z2]
, 
l_member: (x ∈ l)
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat: ℕ
, 
l_all: (∀x∈L.P[x])
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ext-eq: A ≡ B
Lemmas referenced : 
open_box_wf, 
cubical-universe_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
name-morph_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
list_wf, 
list-subtype, 
l_member_wf, 
member_singleton, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
member-list-diff, 
l-first_wf, 
bnot_wf, 
isname_wf, 
nameset_subtype_base, 
istype-sqequal, 
istype-assert, 
l_all_wf2, 
not_wf, 
assert_wf, 
isr_wf, 
sq_exists_wf, 
and_wf, 
istype-void, 
fresh-cname_wf, 
extend-name-morph_wf, 
fresh-cname-not-member2, 
respects-equality-set, 
extd-nameset_wf, 
all_wf, 
equal_wf, 
subtype-respects-equality, 
subtype_rel_set, 
subtype_rel_dep_function, 
nameset_subtype_cons_diff, 
subtype_rel_wf, 
respects-equality-set-trivial2, 
assert-isname, 
name-morph-domain_wf, 
cons_member, 
subtype_base_sq, 
list-diff-subset, 
nameset_subtype, 
iff_weakening_uiff, 
assert-bnot, 
bool_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
eqff_to_assert, 
assert-eq-cname, 
eqtt_to_assert, 
eq-cname_wf, 
isname-name, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
decidable__equal-coordinate_name, 
sq_stable__l_member, 
int_seg_properties, 
nat_properties, 
sq_stable__le, 
select_wf, 
istype-le, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__assert, 
length_wf, 
istype-less_than, 
assert_of_bnot, 
name-morph-domain_subtype, 
istype-inr-sqeq-inl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
independent_pairFormation, 
hypothesis, 
universeIsType, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
sqequalRule, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
closedConclusion, 
intEquality, 
equalityIsType2, 
independent_functionElimination, 
productElimination, 
because_Cache, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
hyp_replacement, 
productIsType, 
equalityIsType4, 
baseApply, 
baseClosed, 
applyLambdaEquality, 
voidElimination, 
equalityIstype, 
unionElimination, 
inlFormation_alt, 
dependent_set_memberFormation_alt, 
setIsType, 
voidEquality, 
inlEquality_alt, 
functionEquality, 
functionIsType, 
functionExtensionality, 
inrFormation_alt, 
cumulativity, 
equalityIsType1, 
promote_hyp, 
equalityIsType3, 
dependent_pairFormation_alt, 
equalityElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}I:Cname  List.  \mforall{}J:nameset(I)  List.  \mforall{}K:Cname  List.  \mforall{}x:nameset(I).  \mforall{}f:name-morph(I-[x];K).  \mforall{}i:\mBbbN{}2.
\mforall{}box:open\_box(c\mBbbU{};I;J;x;i).
    ((J  \mmember{}  nameset(J)  List)
    \mwedge{}  (nameset(J)  \msubseteq{}r  nameset(I-[x]))
    \mwedge{}  ((\mexists{}y:nameset(J)  [((y  \mmember{}  J)  \mwedge{}  (\muparrow{}\mneg{}\msubb{}isname(f  y))  \mwedge{}  (l-first(y.\mneg{}\msubb{}isname(f  y);J)  \msim{}  inl  y))])
        \mvee{}  (((\mforall{}y\mmember{}J.\mneg{}\muparrow{}\mneg{}\msubb{}isname(f  y))  \mwedge{}  (\muparrow{}isr(l-first(y.\mneg{}\msubb{}isname(f  y);J))))
            \mwedge{}  (f[x:=fresh-cname(K)]  \mmember{}  name-morph(I;[fresh-cname(K)  /  K]))
            \mwedge{}  (nameset([x  /  J])  \msubseteq{}r  nameset(I))
            \mwedge{}  (\mforall{}z:nameset([x  /  J]).  (\muparrow{}isname(f[x:=fresh-cname(K)]  z)))
            \mwedge{}  (f[x:=fresh-cname(K)]  \mmember{}  nameset([x  /  J])  {}\mrightarrow{}  nameset([fresh-cname(K)  /  K]))
            \mwedge{}  (x  \mmember{}  nameset([x  /  J]))
            \mwedge{}  (nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f[x:=fresh-cname(K)];I)))))
Date html generated:
2019_11_06-PM-00_54_27
Last ObjectModification:
2018_12_10-PM-03_15_12
Theory : cubical!sets
Home
Index