Nuprl Lemma : rng-pps_wf

r:IntegDom{i}. ∀[eq:EqDecider(|r|)]. (rng-pps(r;eq) ∈ ProjectivePlane)


Proof




Definitions occuring in Statement :  rng-pps: rng-pps(r;eq) projective-plane: ProjectivePlane deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T integ_dom: IntegDom{i} rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T projective-plane: ProjectivePlane and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-projective-plane: BasicProjectivePlane integ_dom: IntegDom{i} crng: CRng rng: Rng zero-vector: 0 true: True squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) implies:  Q not: ¬A btrue: tt mk-pgeo-prim: mk-pgeo-prim bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top pgeo-point: Point mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3) rng-pp-primitives: rng-pp-primitives(r) rng-pps: rng-pps(r;eq) integ_dom_p: IsIntegDom(r) nequal: a ≠ b ∈  nat: sq_stable: SqStable(P) pgeo-line: Line pgeo-plsep: pgeo-plsep(p; a; b) so_apply: x[s] so_lambda: λ2x.t[x] assert: b bnot: ¬bb sq_type: SQType(T) eqof: eqof(d) uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 exposed-it: exposed-it deq: EqDecider(T) pgeo-incident: b pgeo-lsep: l ≠ m pgeo-lpsep: a ≠ b pgeo-psep: a ≠ b iff: ⇐⇒ Q rev_implies:  Q infix_ap: y scalar-triple-product: |a,b,c| cand: c∧ B basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g) pgeo-leq: a ≡ b pgeo-peq: a ≡ b mk-complete-pgeo: mk-complete-pgeo(pg;p) pi1: fst(t) pgeo-join: p ∨ q triangle-axiom1: triangle-axiom1(g) pgeo-meet: l ∧ m triangle-axiom2: triangle-axiom2(g)
Lemmas referenced :  basic-pgeo-axioms_wf projective-plane-structure_subtype projective-plane-structure-complete_subtype subtype_rel_transitivity projective-plane-structure-complete_wf projective-plane-structure_wf pgeo-primitives_wf triangle-axiom1_wf triangle-axiom2_wf deq_wf rng_car_wf integ_dom_wf not_wf zero-vector_wf equal_wf lelt_wf false_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int int_seg_wf rng_one_wf rec_select_update_lemma mk-complete-pgeo_wf mk-pgeo_wf rng-pp-primitives_wf squash_wf rng_zero_wf le_wf scalar-product_wf exists_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert safe-assert-deq eqtt_to_assert bool_wf cross-product_wf decidable__assert assert_wf cross-product-equal-0 deq_property decidable_functionality iff_weakening_uiff iff_weakening_equal rng_times_zero rng_times_wf true_wf scalar-product-mul subtype_rel_self crng_times_comm scalar-product-0 scalar-product-comm scalar-triple-product-symmetry nat_wf rng_wf cross-product-same rng-pp-nontriv1_wf rng-pp-nontriv2_wf deq-implies cross-product-equal-0-iff iff_wf triple-cross-product-zero vector-mul_wf vector-mul-mul rng_sig_wf set_wf scalar-triple-product_wf rng_minus_wf infix_ap_wf rng_plus_wf Binet-Cauchy-identity rng_minus_zero rng_plus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut dependent_set_memberEquality productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry setElimination rename functionEquality equalityElimination baseClosed imageMemberEquality independent_pairFormation intEquality dependent_pairFormation independent_functionElimination approximateComputation unionElimination functionExtensionality applyLambdaEquality natural_numberEquality lambdaEquality voidEquality voidElimination isect_memberEquality productElimination setEquality imageElimination inlEquality cumulativity promote_hyp independent_pairEquality dependent_pairEquality inrEquality levelHypothesis equalityUniverse universeEquality hyp_replacement inrFormation

Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}[eq:EqDecider(|r|)].  (rng-pps(r;eq)  \mmember{}  ProjectivePlane)



Date html generated: 2019_10_16-PM-02_14_01
Last ObjectModification: 2018_08_23-PM-02_17_59

Theory : euclidean!plane!geometry


Home Index