Nuprl Lemma : fun-converges-rmul

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.
  n.f[n;x]↓ for x ∈ I)  (∀g:I ⟶ℝ(g[x] continuous for x ∈  λn.f[n;x] g[x]↓ for x ∈ I))))


Proof




Definitions occuring in Statement :  fun-converges: λn.f[n; x]↓ for x ∈ I) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rmul: b nat: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q so_apply: x[s] rev_implies:  Q fun-cauchy: λn.f[n; x] is cauchy for x ∈ I so_lambda: λ2x.t[x] label: ...$L... t nat_plus: + exists: x:A. B[x] uimplies: supposing a subinterval: I ⊆  guard: {T} rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rneq: x ≠ y or: P ∨ Q int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top le: A ≤ B uiff: uiff(P;Q) cand: c∧ B sq_stable: SqStable(P) squash: T
Lemmas referenced :  fun-converges-iff-cauchy nat_wf i-member_wf real_wf rmul_wf rfun_wf nat_plus_wf set_wf icompact_wf i-approx_wf continuous_wf fun-converges_wf interval_wf i-approx-is-subinterval less_than_wf continuous_functionality_wrt_subinterval r-bound_wf Inorm_wf subtype_rel_sets all_wf rleq_wf rabs_wf int-to-real_wf Inorm-bound rfun_subtype r-bound-property rleq_functionality_wrt_implies rleq_weakening_equal mul_nat_plus int_upper_wf rsub_wf int_upper_subtype_nat nat_plus_subtype_nat rdiv_wf rless-int int_upper_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf uiff_transitivity rleq_functionality rabs_functionality req_inversion rmul-rsub-distrib req_weakening rabs-rmul mul_bounds_1b zero-rleq-rabs rleq-int sq_stable__icompact decidable__le intformle_wf int_formula_prop_le_lemma multiply_nat_plus itermMultiply_wf intformeq_wf int_term_value_mul_lemma int_formula_prop_eq_lemma equal_wf rmul_functionality_wrt_rleq2 rmul_comm rleq-int-fractions rmul-int-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis because_Cache setElimination rename dependent_set_memberEquality isectElimination setEquality productElimination independent_functionElimination functionEquality natural_numberEquality dependent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry inrFormation unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll multiplyEquality inlFormation imageMemberEquality baseClosed imageElimination productEquality applyLambdaEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.
    (\mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)  {}\mRightarrow{}  (\mforall{}g:I  {}\mrightarrow{}\mBbbR{}.  (g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  \mlambda{}n.f[n;x]  *  g[x]\mdownarrow{}  for  x  \mmember{}  I))))



Date html generated: 2017_10_03-PM-00_03_04
Last ObjectModification: 2017_07_28-AM-08_31_24

Theory : reals


Home Index