Nuprl Lemma : fun-converges-rmul
∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.
  (λn.f[n;x]↓ for x ∈ I) 
⇒ (∀g:I ⟶ℝ. (g[x] continuous for x ∈ I 
⇒ λn.f[n;x] * g[x]↓ for x ∈ I))))
Proof
Definitions occuring in Statement : 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
rmul: a * b
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
subinterval: I ⊆ J 
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
fun-converges-iff-cauchy, 
nat_wf, 
i-member_wf, 
real_wf, 
rmul_wf, 
rfun_wf, 
nat_plus_wf, 
set_wf, 
icompact_wf, 
i-approx_wf, 
continuous_wf, 
fun-converges_wf, 
interval_wf, 
i-approx-is-subinterval, 
less_than_wf, 
continuous_functionality_wrt_subinterval, 
r-bound_wf, 
Inorm_wf, 
subtype_rel_sets, 
all_wf, 
rleq_wf, 
rabs_wf, 
int-to-real_wf, 
Inorm-bound, 
rfun_subtype, 
r-bound-property, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
mul_nat_plus, 
int_upper_wf, 
rsub_wf, 
int_upper_subtype_nat, 
nat_plus_subtype_nat, 
rdiv_wf, 
rless-int, 
int_upper_properties, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
uiff_transitivity, 
rleq_functionality, 
rabs_functionality, 
req_inversion, 
rmul-rsub-distrib, 
req_weakening, 
rabs-rmul, 
mul_bounds_1b, 
zero-rleq-rabs, 
rleq-int, 
sq_stable__icompact, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
multiply_nat_plus, 
itermMultiply_wf, 
intformeq_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
equal_wf, 
rmul_functionality_wrt_rleq2, 
rmul_comm, 
rleq-int-fractions, 
rmul-int-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
dependent_set_memberEquality, 
isectElimination, 
setEquality, 
productElimination, 
independent_functionElimination, 
functionEquality, 
natural_numberEquality, 
dependent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
multiplyEquality, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productEquality, 
applyLambdaEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.
    (\mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)  {}\mRightarrow{}  (\mforall{}g:I  {}\mrightarrow{}\mBbbR{}.  (g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  \mlambda{}n.f[n;x]  *  g[x]\mdownarrow{}  for  x  \mmember{}  I))))
Date html generated:
2017_10_03-PM-00_03_04
Last ObjectModification:
2017_07_28-AM-08_31_24
Theory : reals
Home
Index