Nuprl Lemma : real-vec-triangle-equality
∀n:ℕ. ∀x,y,z:ℝ^n.  ((r0 < d(y;z)) 
⇒ (d(x;z) = (d(x;y) + d(y;z))) 
⇒ (real-vec-be(n;x;y;z) ∧ ((r0 < d(x;y)) 
⇒ x-y-z)))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
real-vec-between: a-b-c
, 
real-vec: ℝ^n
, 
rless: x < y
, 
req: x = y
, 
radd: a + b
, 
int-to-real: r(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-dist: d(x;y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
req-vec: req-vec(n;x;y)
, 
real-vec-sub: X - Y
, 
real-vec-add: X + Y
, 
nat: ℕ
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real-vec: ℝ^n
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
rsub: x - y
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
rge: x ≥ y
, 
guard: {T}
, 
real-vec-mul: a*X
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
top: Top
, 
real-vec-between: a-b-c
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
Lemmas referenced : 
real-vec-norm_functionality, 
real-vec-sub_wf, 
real-vec-add_wf, 
int_seg_wf, 
req_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
radd_wf, 
rless_wf, 
real-vec_wf, 
nat_wf, 
rminus_wf, 
req_weakening, 
real-vec-norm_wf, 
Minkowski-equality, 
uiff_transitivity, 
req_functionality, 
req_inversion, 
radd-assoc, 
radd_functionality, 
radd-ac, 
radd-rminus-assoc, 
trivial-rless-radd, 
rless-int, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
equal_wf, 
rmul_preserves_req, 
rmul_wf, 
rdiv_wf, 
rsub_wf, 
req_transitivity, 
rmul-distrib, 
rmul_functionality, 
rmul_over_rminus, 
rmul-assoc, 
rmul-one-both, 
rminus_functionality, 
rmul_comm, 
rmul-ac, 
rmul-rdiv-cancel2, 
radd_comm, 
radd-preserves-req, 
radd-rminus-both, 
radd-zero-both, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
member_rccint_lemma, 
rmul_preserves_rleq, 
i-member_wf, 
rccint_wf, 
req-vec_wf, 
real-vec-mul_wf, 
member_rooint_lemma, 
rmul_preserves_rless, 
rooint_wf, 
rleq-int, 
false_wf, 
trivial-rleq-radd, 
rleq_functionality, 
rmul-zero-both, 
rless_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
setEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
imageElimination, 
universeEquality, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
addLevel
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y,z:\mBbbR{}\^{}n.
    ((r0  <  d(y;z))
    {}\mRightarrow{}  (d(x;z)  =  (d(x;y)  +  d(y;z)))
    {}\mRightarrow{}  (real-vec-be(n;x;y;z)  \mwedge{}  ((r0  <  d(x;y))  {}\mRightarrow{}  x-y-z)))
Date html generated:
2017_10_03-AM-11_13_01
Last ObjectModification:
2017_07_28-AM-08_23_52
Theory : reals
Home
Index