Nuprl Lemma : rlog-rmul
∀x,y:{t:ℝ| r0 < t} .  (rlog(x * y) = (rlog(x) + rlog(y)))
Proof
Definitions occuring in Statement : 
rlog: rlog(x), 
rless: x < y, 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
prop: ℙ, 
squash: ↓T, 
rfun: I ⟶ℝ, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
rge: x ≥ y, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
rdiv: (x/y), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
exists: ∃x:A. B[x], 
true: True, 
less_than': less_than'(a;b), 
less_than: a < b, 
rsub: x - y
Lemmas referenced : 
sq_stable__rless, 
int-to-real_wf, 
rmul_wf, 
rmul-is-positive, 
rless_wf, 
sq_stable__req, 
rlog_wf, 
radd_wf, 
member_roiint_lemma, 
rsub_wf, 
real_wf, 
i-member_wf, 
roiint_wf, 
set_wf, 
antiderivatives-differ-by-constant, 
iproper-roiint, 
rdiv_wf, 
derivative-rlog, 
derivative-const, 
derivative-sub, 
sq_stable__i-member, 
derivative-id, 
derivative-const-mul2, 
chain-rule, 
rdiv_functionality, 
req_functionality, 
req_wf, 
req_weakening, 
monotone-maps-compact, 
rmul_functionality_wrt_rleq2, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
all_wf, 
rleq_wf, 
sq_stable__rleq, 
rmul-zero-both, 
rless_functionality, 
rmul_preserves_rless, 
derivative_functionality, 
rmul_preserves_req, 
rinv_wf2, 
uiff_transitivity, 
rmul_functionality, 
rsub_functionality, 
rinv-of-rmul, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-rinv, 
rmul-rinv3, 
rless-int, 
rlog1, 
radd-rminus-assoc, 
radd-assoc, 
req_inversion, 
rlog_functionality, 
radd_functionality, 
rmul-one-both, 
rminus_wf, 
radd-zero-both, 
radd-rminus-both, 
radd-ac, 
radd_comm, 
radd-preserves-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
inlFormation, 
independent_pairFormation, 
productEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
because_Cache, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
independent_isectElimination, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
comment, 
computeAll, 
int_eqEquality, 
intEquality
Latex:
\mforall{}x,y:\{t:\mBbbR{}|  r0  <  t\}  .    (rlog(x  *  y)  =  (rlog(x)  +  rlog(y)))
Date html generated:
2017_10_04-PM-10_26_20
Last ObjectModification:
2017_07_28-AM-08_49_57
Theory : reals_2
Home
Index