Nuprl Lemma : select-unshuffle

[T:Type]. ∀as:T List. ∀i:ℕ||unshuffle(as)||.  (unshuffle(as)[i] = <as[2 i], as[(2 i) 1]> ∈ (T × T))


Proof




Definitions occuring in Statement :  unshuffle: unshuffle(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] pair: <a, b> product: x:A × B[x] multiply: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) le: A ≤ B less_than: a < b squash: T unshuffle: unshuffle(L) lt_int: i <j ifthenelse: if then else fi  btrue: tt cons: [a b] true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) bfalse: ff bool: 𝔹 unit: Unit it: select: L[n] subtract: m less_than': less_than'(a;b) nat_plus: + nequal: a ≠ b ∈  int_nzero: -o
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self istype-nat non_neg_length length_wf unshuffle_wf itermAdd_wf int_term_value_add_lemma length_wf_nat list_wf istype-universe list-cases length_of_nil_lemma reduce_tl_nil_lemma product_subtype_list length_of_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma lt_int_wf cons_wf equal_wf length-unshuffle length-nil select_wf itermMultiply_wf int_term_value_mul_lemma iff_weakening_equal assert_wf bnot_wf not_wf less_than_wf istype-assert equal-wf-T-base bool_wf le_int_wf le_wf tl_wf add-is-int-iff false_wf bool_cases bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot uiff_transitivity assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int rem_bounds_1 nequal_wf div_rem_sum le_weakening2 mul-distributes add-associates mul-commutes add-commutes add-swap select-cons-tl squash_wf true_wf select_cons_tl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  productElimination unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption imageElimination productEquality addEquality universeEquality promote_hyp independent_pairEquality multiplyEquality closedConclusion imageMemberEquality baseClosed Error :functionIsType,  pointwiseFunctionality baseApply cumulativity equalityElimination Error :equalityIsType1,  intEquality Error :equalityIsType4,  minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}as:T  List.  \mforall{}i:\mBbbN{}||unshuffle(as)||.    (unshuffle(as)[i]  =  <as[2  *  i],  as[(2  *  i)  +  1]>)



Date html generated: 2019_06_20-PM-01_48_02
Last ObjectModification: 2018_10_18-PM-00_42_06

Theory : list_1


Home Index