Nuprl Lemma : odd-l_sum
∀[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].  uiff(↑isOdd(l_sum(map(f;L)));↑isOdd(||filter(λx.isOdd(f x);L)||))
Proof
Definitions occuring in Statement : 
isOdd: isOdd(n)
, 
l_sum: l_sum(L)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
filter: filter(P;l)
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
cons: [a / b]
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
sq_type: SQType(T)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
compose: f o g
, 
bnot: ¬bb
, 
assert: ↑b
, 
true: True
, 
subtract: n - m
, 
sq_stable: SqStable(P)
Lemmas referenced : 
l_member_wf, 
istype-int, 
list_wf, 
istype-universe, 
l_sum-sum, 
list-subtype, 
uiff_wf, 
assert_wf, 
isOdd_wf, 
length_wf, 
filter_wf2, 
iff_weakening_uiff, 
sum_wf, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
select_member, 
int_seg_wf, 
isOdd-sum, 
assert_witness, 
istype-assert, 
nat_properties, 
ge_wf, 
istype-less_than, 
list-cases, 
stuck-spread, 
istype-base, 
length_of_nil_lemma, 
filter_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
length_of_cons_lemma, 
filter_cons_lemma, 
istype-nat, 
nil_wf, 
subtype_rel_dep_function, 
cons_wf, 
subtype_rel_sets_simple, 
cons_member, 
upto_decomp2, 
add_nat_plus, 
nat_plus_properties, 
add-is-int-iff, 
false_wf, 
add-subtract-cancel, 
eqtt_to_assert, 
filter-map, 
map-length, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
squash_wf, 
true_wf, 
upto_wf, 
filter_wf5, 
select-cons-tl, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
sq_stable__l_member, 
decidable__equal_int_seg, 
subtype_rel_list, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
functionIsType, 
setIsType, 
universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
instantiate, 
universeEquality, 
setEquality, 
functionExtensionality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
lambdaEquality_alt, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
imageElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
promote_hyp, 
intWeakElimination, 
axiomSqEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
baseClosed, 
hypothesis_subsumption, 
equalityIstype, 
equalityTransitivity, 
baseApply, 
closedConclusion, 
intEquality, 
sqequalBase, 
inrFormation_alt, 
addEquality, 
pointwiseFunctionality, 
productIsType, 
equalityElimination, 
cumulativity, 
imageMemberEquality, 
functionExtensionality_alt
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    uiff(\muparrow{}isOdd(l\_sum(map(f;L)));\muparrow{}isOdd(||filter(\mlambda{}x.isOdd(f  x);L)||))
Date html generated:
2020_05_19-PM-10_01_46
Last ObjectModification:
2019_11_13-AM-11_08_47
Theory : num_thy_1
Home
Index