Nuprl Lemma : interleaving_singleton

[T:Type]
  ∀L:T List. ∀i:ℕ||L||.
    ∃L2:T List
     ∃f1:ℕ1 ⟶ ℕ||L||. ∃f2:ℕ||L2|| ⟶ ℕ||L||. (interleaving_occurence(T;[L[i]];L2;L;f1;f2) ∧ ((f1 0) i ∈ ℤ))


Proof




Definitions occuring in Statement :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) select: L[n] length: ||as|| cons: [a b] nil: [] list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  and: P ∧ Q exists: x:A. B[x] implies:  Q int_seg: {i..j-} member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] prop: top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a squash: T less_than: a < b or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k guard: {T} ge: i ≥  nat: less_than': less_than'(a;b) le: A ≤ B increasing: increasing(f;k) interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) cons: [a b] select: L[n] sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True subtract: m sq_stable: SqStable(P) uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] length: ||as|| list_ind: list_ind nil: [] it: cand: c∧ B
Lemmas referenced :  list_wf decidable__int_equal length_wf int_seg_wf equal_wf interleaving_split int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt int_seg_properties lelt_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf nat_properties false_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nat_wf less_than_wf length_of_nil_lemma length_of_cons_lemma nil_wf decidable__le select_wf cons_wf list_extensionality int_subtype_base subtype_base_sq iff_weakening_equal true_wf squash_wf length_wf_nat non_neg_length exists_wf le-add-cancel zero-add not-lt-2 length-singleton interleaving_occurence_wf subtype_rel_self le-add-cancel2 add-zero add_functionality_wrt_le add-commutes add-associates minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 product_subtype_list cons_neq_nil list-cases int_seg_subtype subtype_rel_dep_function equal-wf-base set_subtype_base le_wf istype-int add-is-int-iff full-omega-unsat itermAdd_wf int_term_value_add_lemma istype-le istype-universe istype-less_than
Rules used in proof :  universeEquality productElimination because_Cache sqequalRule independent_functionElimination cumulativity natural_numberEquality hypothesis rename setElimination intEquality lambdaEquality dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation independent_isectElimination imageElimination unionElimination applyLambdaEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality instantiate baseClosed imageMemberEquality applyEquality functionExtensionality functionEquality productEquality minusEquality addEquality hypothesis_subsumption promote_hyp hyp_replacement lambdaEquality_alt pointwiseFunctionality baseApply closedConclusion approximateComputation dependent_pairFormation_alt Error :memTop,  universeIsType dependent_set_memberEquality_alt lambdaFormation_alt productIsType inhabitedIsType equalityIstype sqequalBase

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||L||.
        \mexists{}L2:T  List
          \mexists{}f1:\mBbbN{}1  {}\mrightarrow{}  \mBbbN{}||L||
            \mexists{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.  (interleaving\_occurence(T;[L[i]];L2;L;f1;f2)  \mwedge{}  ((f1  0)  =  i))



Date html generated: 2020_05_20-AM-07_48_47
Last ObjectModification: 2020_01_25-PM-10_54_34

Theory : list!


Home Index