Nuprl Lemma : interleaving_singleton
∀[T:Type]
  ∀L:T List. ∀i:ℕ||L||.
    ∃L2:T List
     ∃f1:ℕ1 ⟶ ℕ||L||. ∃f2:ℕ||L2|| ⟶ ℕ||L||. (interleaving_occurence(T;[L[i]];L2;L;f1;f2) ∧ ((f1 0) = i ∈ ℤ))
Proof
Definitions occuring in Statement : 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
top: Top
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
less_than: a < b
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
ge: i ≥ j 
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
increasing: increasing(f;k)
, 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
, 
cons: [a / b]
, 
select: L[n]
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
decidable__int_equal, 
length_wf, 
int_seg_wf, 
equal_wf, 
interleaving_split, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
int_seg_properties, 
lelt_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
nat_properties, 
false_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
nat_wf, 
less_than_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
nil_wf, 
decidable__le, 
select_wf, 
cons_wf, 
list_extensionality, 
int_subtype_base, 
subtype_base_sq, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
length_wf_nat, 
non_neg_length, 
exists_wf, 
le-add-cancel, 
zero-add, 
not-lt-2, 
length-singleton, 
interleaving_occurence_wf, 
subtype_rel_self, 
le-add-cancel2, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
product_subtype_list, 
cons_neq_nil, 
list-cases, 
int_seg_subtype, 
subtype_rel_dep_function, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
add-is-int-iff, 
full-omega-unsat, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-le, 
istype-universe, 
istype-less_than
Rules used in proof : 
universeEquality, 
productElimination, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
cumulativity, 
natural_numberEquality, 
hypothesis, 
rename, 
setElimination, 
intEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
imageElimination, 
unionElimination, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
productEquality, 
minusEquality, 
addEquality, 
hypothesis_subsumption, 
promote_hyp, 
hyp_replacement, 
lambdaEquality_alt, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
approximateComputation, 
dependent_pairFormation_alt, 
Error :memTop, 
universeIsType, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
productIsType, 
inhabitedIsType, 
equalityIstype, 
sqequalBase
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||L||.
        \mexists{}L2:T  List
          \mexists{}f1:\mBbbN{}1  {}\mrightarrow{}  \mBbbN{}||L||
            \mexists{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.  (interleaving\_occurence(T;[L[i]];L2;L;f1;f2)  \mwedge{}  ((f1  0)  =  i))
Date html generated:
2020_05_20-AM-07_48_47
Last ObjectModification:
2020_01_25-PM-10_54_34
Theory : list!
Home
Index