Nuprl Lemma : filter-mFOL-freevars-of-rename
∀z,z':ℤ. ∀fmla':mFOL().
  ((¬(z' ∈ mFOL-boundvars(fmla')))
  ⇒ (¬(z' ∈ mFOL-freevars(fmla')))
  ⇒ (filter(λx.(¬b(x =z z'));mFOL-freevars(mFOL-rename(fmla';z;z')))
     = filter(λx.(¬b(x =z z));mFOL-freevars(fmla'))
     ∈ (ℤ List)))
Proof
Definitions occuring in Statement : 
mFOL-rename: mFOL-rename(fmla;old;new), 
mFOL-boundvars: mFOL-boundvars(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
l_member: (x ∈ l), 
filter: filter(P;l), 
list: T List, 
bnot: ¬bb, 
eq_int: (i =z j), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
prop: ℙ, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s], 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL-rename: mFOL-rename(fmla;old;new), 
mFOatomic: name(vars), 
mFOL_ind: mFOL_ind, 
not: ¬A, 
false: False, 
mFOL-boundvars: mFOL-boundvars(fmla), 
nil: [], 
it: ⋅, 
mFOconnect: mFOconnect(knd;left;right), 
mFOquant: mFOquant(isall;var;body), 
guard: {T}, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
cons: [a / b], 
le: A ≤ B, 
less_than': less_than'(a;b), 
colength: colength(L), 
sq_type: SQType(T), 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
bfalse: ff, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
true: True, 
cand: A c∧ B
Lemmas referenced : 
mFOL-induction, 
not_wf, 
l_member_wf, 
mFOL-boundvars_wf, 
mFOL-freevars_wf, 
equal-wf-base, 
list_wf, 
filter_wf5, 
mFOL-rename_wf, 
bnot_wf, 
eq_int_wf, 
list_subtype_base, 
int_subtype_base, 
mFOL_wf, 
mFOatomic_wf, 
istype-void, 
nil_wf, 
istype-atom, 
mFOconnect_wf, 
mFOquant_wf, 
bool_wf, 
istype-int, 
member-remove-repeats, 
int-deq_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
map_nil_lemma, 
remove_repeats_nil_lemma, 
filter_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
map_cons_lemma, 
remove_repeats_cons_lemma, 
intdeq_reduce_lemma, 
filter_cons_lemma, 
istype-nat, 
cons_member, 
cons_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
length_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
ifthenelse_wf, 
bfalse_wf, 
swap-filter-filter, 
remove-repeats_wf, 
map_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
filter_trivial, 
iff_transitivity, 
assert_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
istype-assert, 
l_all_iff, 
band-idempotent, 
filter-filter, 
val-union-l-union, 
int-valueall-type, 
member-union, 
l-union_wf, 
istype-universe, 
filter-union, 
deq_wf, 
member-insert, 
member_filter, 
istype-true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
intEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
setIsType, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
independent_isectElimination, 
independent_functionElimination, 
functionIsType, 
equalityIstype, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
voidElimination, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
axiomEquality, 
functionIsTypeImplies, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
inrFormation_alt, 
inlFormation_alt, 
cumulativity, 
equalityElimination, 
imageMemberEquality, 
functionExtensionality_alt, 
universeEquality, 
unionIsType, 
productIsType
Latex:
\mforall{}z,z':\mBbbZ{}.  \mforall{}fmla':mFOL().
    ((\mneg{}(z'  \mmember{}  mFOL-boundvars(fmla')))
    {}\mRightarrow{}  (\mneg{}(z'  \mmember{}  mFOL-freevars(fmla')))
    {}\mRightarrow{}  (filter(\mlambda{}x.(\mneg{}\msubb{}(x  =\msubz{}  z'));mFOL-freevars(mFOL-rename(fmla';z;z')))
          =  filter(\mlambda{}x.(\mneg{}\msubb{}(x  =\msubz{}  z));mFOL-freevars(fmla'))))
 Date html generated: 
2020_05_20-AM-09_08_32
 Last ObjectModification: 
2019_12_31-PM-04_58_27
Theory : minimal-first-order-logic
Home
Index