Nuprl Lemma : fps-set-to-one-one

[r:CRng]. ∀[y:Atom]. ∀[n:ℕ].  ([1]_n(y:=1) if (n =z 0) then else fi  ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) fps-one: 1 fps-zero: 0 power-series: PowerSeries(X;r) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] natural_number: $n atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-zero: 0 fps-one: 1 fps-coeff: f[b] fps-set-to-one: [f]_n(y:=1) subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt bor: p ∨bq ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} crng: CRng rng: Rng rev_implies:  Q iff: ⇐⇒ Q prop: less_than: a < b squash: T bag-count: (#x in bs) count: count(P;L) reduce: reduce(f;k;as) list_ind: list_ind empty-bag: {} nil: [] bag-size: #(bs) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top decidable: Dec(P) true: True band: p ∧b q
Lemmas referenced :  fps-ext fps-set-to-one_wf fps-one_wf ifthenelse_wf eq_int_wf power-series_wf fps-zero_wf lt_int_wf bag-count_wf atom-deq_wf eqtt_to_assert assert_of_lt_int assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nat_properties nequal-le-implies zero-add istype-le rng_zero_wf bool_wf iff_weakening_uiff assert_wf less_than_wf istype-less_than bag-size_wf bag_wf istype-nat istype-atom crng_wf bag-null_wf assert-bag-null equal-wf-T-base length_of_nil_lemma full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-empty-bag empty_bag_append_lemma bag_size_empty_lemma bag-null-rep subtract_wf decidable__le intformnot_wf intformle_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_subtype_base decidable__equal_int bag_null_empty_lemma rng_one_wf equal_wf squash_wf true_wf istype-universe bag-null-append bag-rep_wf list-subtype-bag bfalse_wf subtype_rel_self iff_weakening_equal iff_imp_equal_bool bool_cases band_wf btrue_wf iff_functionality_wrt_iff false_wf iff_transitivity assert_of_band istype-assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin atomEquality hypothesisEquality hypothesis setElimination rename natural_numberEquality productElimination independent_isectElimination lambdaFormation_alt sqequalRule applyEquality because_Cache inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry lambdaEquality_alt dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination hypothesis_subsumption independent_pairFormation dependent_set_memberEquality_alt cumulativity universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies hyp_replacement applyLambdaEquality imageElimination baseClosed sqequalBase approximateComputation int_eqEquality intEquality universeEquality closedConclusion imageMemberEquality productEquality productIsType

Latex:
\mforall{}[r:CRng].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([1]\_n(y:=1)  =  if  (n  =\msubz{}  0)  then  1  else  0  fi  )



Date html generated: 2019_10_16-AM-11_36_29
Last ObjectModification: 2018_11_26-PM-03_09_16

Theory : power!series


Home Index