Nuprl Lemma : until-class-program_wf

[Info,B,C:Type]. ∀[X:EClass(B)]. ∀[Y:EClass(C)]. ∀[xpr:LocalClass(X)]. ∀[ypr:LocalClass(Y)].
  (until-class-program(xpr;ypr) ∈ LocalClass((X until Y)))


Proof




Definitions occuring in Statement :  until-class-program: until-class-program(xpr;ypr) until-class: (X until Y) local-class: LocalClass(X) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  es-le_wf event-ordering+_subtype es-E_wf es-loc_wf hdataflow_wf es-le-loc and_wf equal_wf Id_wf iterate-hdataflow_wf map_wf es-info_wf es-before_wf hdf-ap_wf bag_wf pi2_wf es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf all_wf class-ap_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-first_wf2 bool_wf eqtt_to_assert map_nil_lemma iter_hdf_nil_lemma hdf-until_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-pred_wf subtype_rel_list top_wf map_cons_lemma iter_hdf_cons_lemma es-pred-locl es-causl_weakening es-locl_transitivity1 es-le_weakening iff_weakening_equal lt_int_wf bag-size_wf assert_of_lt_int hdf-halt_wf isl_wf sq_exists_wf es-locl_wf assert_wf not_wf es-local-pred_wf or_wf map_append_sq iterate-hdf-append hdf-until-ap-fst hdf_ap_halt_lemma hdf-until-halt-left hdataflow-ext unit_wf2 bag-null_wf assert-bag-null equal-wf-T-base hdf-run_wf hdf-ap-inl hdf-until-halt-right bag_size_empty_lemma squash_wf true_wf empty-bag-iff-size minus-zero until-class_wf es-interface-subtype_rel2 event-ordering+_wf class-pred_wf empty-bag_wf hdf-until-ap-snd

Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B)].  \mforall{}[Y:EClass(C)].  \mforall{}[xpr:LocalClass(X)].  \mforall{}[ypr:LocalClass(Y)].
    (until-class-program(xpr;ypr)  \mmember{}  LocalClass((X  until  Y)))



Date html generated: 2015_07_22-PM-00_02_19
Last ObjectModification: 2015_02_04-PM-05_13_59

Home Index