Nuprl Lemma : bm_remove_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[x:Key]. ∀[m:binary-map(T;Key)].
  bm_remove(compare;m;x) ∈ binary-map(T;Key) × T supposing ↑bm_inDomain(compare;m;x)
Proof
Definitions occuring in Statement : 
bm_remove: bm_remove(compare;m;x)
, 
bm_inDomain: bm_inDomain(compare;m;x)
, 
bm_compare: bm_compare(K)
, 
binary-map: binary-map(T;Key)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
assert_wf, 
bm_inDomain_wf, 
bm_cnt_prop_wf, 
le_wf, 
binary_map_size_wf, 
binary_map_wf, 
int_seg_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
binary_map-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
bm_cnt_prop_E, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
not-le-2, 
subtract-is-less, 
lelt_wf, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
lt_int_wf, 
assert_of_lt_int, 
spread_wf, 
bm_T'_wf, 
bm_delete'_wf, 
btrue_wf, 
equal-wf-base-T, 
int_subtype_base, 
bm_numItems_wf, 
bm_cnt_prop_T, 
bm_T_wf, 
bm_T-wf2, 
member_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
nat_wf, 
binary-map_wf, 
bm_compare_wf, 
bm_compare_greater_greater_false, 
bnot_wf, 
not_wf, 
minus-zero, 
bm_compare_sym_eq, 
bm_compare_less_less_false, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[x:Key].  \mforall{}[m:binary-map(T;Key)].
    bm\_remove(compare;m;x)  \mmember{}  binary-map(T;Key)  \mtimes{}  T  supposing  \muparrow{}bm\_inDomain(compare;m;x)
Date html generated:
2015_07_17-AM-08_20_08
Last ObjectModification:
2015_01_27-PM-00_37_49
Home
Index