Nuprl Lemma : name-morph-decomp

I,J:Cname List. ∀f:name-morph(I;J).
  ∃L:(Cname × ℕ2) List
   ∃K:Cname List
    (nameset(I) ≡ nameset(map(λp.(fst(p));L) K)
    ∧ (∃g:nameset(K) ⟶ nameset(J)
        (Inj(nameset(K);nameset(J);g) ∧ (f (face-maps-comp(L) degeneracy-map(g)) ∈ name-morph(I;J)))))


Proof




Definitions occuring in Statement :  face-maps-comp: face-maps-comp(L) name-comp: (f g) degeneracy-map: degeneracy-map(f) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname map: map(f;as) append: as bs list: List inject: Inj(A;B;f) int_seg: {i..j-} ext-eq: A ≡ B pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nameset: nameset(L) name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: exists: x:A. B[x] so_lambda: λ2x.t[x] pi1: fst(t) subtype_rel: A ⊆B top: Top guard: {T} so_apply: x[s] mapfilter: mapfilter(f;P;L) compose: g ext-eq: A ≡ B iff: ⇐⇒ Q rev_implies:  Q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb ifthenelse: if then else fi  assert: b bfalse: ff or: P ∨ Q cand: c∧ B true: True sq_type: SQType(T) false: False name-morph-domain: name-morph-domain(f;I) degeneracy-map: degeneracy-map(f) name-comp: (f g) uext: uext(g) l_subset: l_subset(T;as;bs) squash: T not: ¬A int_seg: {i..j-} l_member: (x ∈ l) coordinate_name: Cname int_upper: {i...} nat: sq_stable: SqStable(P) ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) outl: outl(x)
Lemmas referenced :  name-morph_wf list_wf coordinate_name_wf mapfilter_wf nameset_wf list-subtype bnot_wf isname_wf int_seg_wf assert_of_bnot not-assert-isname assert_wf exists_wf ext-eq_wf append_wf map_wf inject_wf equal_wf name-comp_wf face-maps-comp_wf name-morph_subtype pi1_wf_top subtype_rel_weakening degeneracy-map_wf map-map map-id filter_wf_top filter_wf5 l_member_wf member_append bool_wf eqtt_to_assert false_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot member_filter_2 or_wf assert-isname name-morph-domain-inject all_wf extd-nameset_wf face-maps-comp-property nameset_subtype ext-eq_inversion subtype_rel_transitivity squash_wf true_wf iff_weakening_equal set_subtype_base lelt_wf int_subtype_base cname_deq_wf strong-subtype-deq-subtype strong-subtype-set2 apply-alist-function subtype_rel_list top_wf le_wf select_wf sq_stable__le nat_properties sq_stable__l_member decidable__equal-coordinate_name decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf length_wf unit_wf2 union_subtype_base extd-nameset_subtype_base unit_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache equalityTransitivity equalitySymmetry lambdaEquality applyEquality setElimination rename productEquality natural_numberEquality sqequalRule productElimination independent_isectElimination independent_pairEquality setEquality dependent_pairFormation functionEquality functionExtensionality isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality dependent_functionElimination independent_functionElimination unionElimination equalityElimination inrFormation promote_hyp instantiate cumulativity inlFormation addLevel orFunctionality imageElimination universeEquality imageMemberEquality baseClosed intEquality applyLambdaEquality int_eqEquality computeAll unionEquality

Latex:
\mforall{}I,J:Cname  List.  \mforall{}f:name-morph(I;J).
    \mexists{}L:(Cname  \mtimes{}  \mBbbN{}2)  List
      \mexists{}K:Cname  List
        (nameset(I)  \mequiv{}  nameset(map(\mlambda{}p.(fst(p));L)  @  K)
        \mwedge{}  (\mexists{}g:nameset(K)  {}\mrightarrow{}  nameset(J)
                (Inj(nameset(K);nameset(J);g)  \mwedge{}  (f  =  (face-maps-comp(L)  o  degeneracy-map(g))))))



Date html generated: 2017_10_05-AM-10_10_40
Last ObjectModification: 2017_07_28-AM-11_17_34

Theory : cubical!sets


Home Index