Nuprl Lemma : face-maps-comp-property
∀L:(Cname × ℕ2) List
  ∀[I:Cname List]
    ∀y:nameset(map(λp.(fst(p));L) @ I)
      (((↑isname(face-maps-comp(L) y)) ⇒ ((¬(y ∈ map(λp.(fst(p));L))) ∧ ((face-maps-comp(L) y) = y ∈ nameset(I))))
      ∧ ((¬↑isname(face-maps-comp(L) y))
        ⇒ ((y ∈ map(λp.(fst(p));L)) ∧ ((face-maps-comp(L) y) = outl(apply-alist(CnameDeq;L;y)) ∈ ℕ2))))
Proof
Definitions occuring in Statement : 
face-maps-comp: face-maps-comp(L), 
isname: isname(z), 
nameset: nameset(L), 
cname_deq: CnameDeq, 
coordinate_name: Cname, 
apply-alist: apply-alist(eq;L;x), 
l_member: (x ∈ l), 
map: map(f;as), 
append: as @ bs, 
list: T List, 
int_seg: {i..j-}, 
outl: outl(x), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
product: x:A × B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
prop: ℙ, 
pi1: fst(t), 
name-morph: name-morph(I;J), 
guard: {T}, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
nameset: nameset(L), 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs, 
top: Top, 
face-maps-comp: face-maps-comp(L), 
rev_uimplies: rev_uimplies(P;Q), 
isname: isname(z), 
int_upper: {i...}, 
coordinate_name: Cname, 
pi2: snd(t), 
decidable: Dec(P), 
sq_type: SQType(T), 
compose: f o g, 
name-comp: (f o g), 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
true: True, 
squash: ↓T, 
face-map: (x:=i), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
assert: ↑b, 
bnot: ¬bb, 
uext: uext(g), 
lt_int: i <z j, 
le_int: i ≤z j, 
outl: outl(x), 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
list_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_induction, 
map_wf, 
append_wf, 
nameset_wf, 
face-maps-comp_wf, 
isname_wf, 
assert_wf, 
equal_wf, 
l_member_wf, 
not_wf, 
assert-isname, 
member_append, 
not-assert-isname, 
cname_deq_wf, 
isl-apply-alist, 
outl_wf, 
nameset_subtype_extd-nameset, 
istype-assert, 
btrue_neq_bfalse, 
nil_wf, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
list_ind_nil_lemma, 
map_nil_lemma, 
istype-void, 
reduce_nil_lemma, 
assert_of_le_int, 
map_cons_lemma, 
reduce_cons_lemma, 
apply_alist_cons_lemma, 
list_ind_cons_lemma, 
cons_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
decidable__equal-coordinate_name, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
subtype_base_sq, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
int_seg_properties, 
bnot_wf, 
iff_weakening_equal, 
subtype_rel_self, 
eq_int_eq_true, 
istype-universe, 
true_wf, 
squash_wf, 
bool_wf, 
equal-wf-base, 
eq_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-le, 
assert-bnot, 
bool_cases_sqequal, 
bool_subtype_base, 
lelt_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
le_int_wf, 
int_seg_cases, 
int_seg_subtype_special, 
decidable__equal_int, 
safe-assert-deq, 
eqof_wf, 
cons_member, 
neg_assert_of_eq_int, 
equal-wf-T-base, 
false_wf, 
iff_functionality_wrt_iff, 
bfalse_wf, 
iff_imp_equal_bool, 
respects-equality-set, 
respects-equality-set-trivial2, 
apply-alist_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
independent_functionElimination, 
lambdaEquality_alt, 
isectEquality, 
functionEquality, 
productIsType, 
hypothesisEquality, 
productElimination, 
because_Cache, 
closedConclusion, 
dependent_functionElimination, 
equalityIsType1, 
inhabitedIsType, 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
independent_isectElimination, 
unionElimination, 
voidElimination, 
dependent_set_memberEquality_alt, 
functionIsType, 
axiomEquality, 
functionIsTypeImplies, 
independent_pairEquality, 
independent_pairFormation, 
isect_memberFormation_alt, 
isect_memberEquality_alt, 
intEquality, 
cumulativity, 
instantiate, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
applyLambdaEquality, 
equalityIsType4, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
baseClosed, 
baseApply, 
equalityElimination, 
promote_hyp, 
hypothesis_subsumption, 
inlFormation_alt, 
equalityIstype, 
inrFormation_alt, 
equalityIsType3, 
unionIsType, 
isectIsType
Latex:
\mforall{}L:(Cname  \mtimes{}  \mBbbN{}2)  List
    \mforall{}[I:Cname  List]
        \mforall{}y:nameset(map(\mlambda{}p.(fst(p));L)  @  I)
            (((\muparrow{}isname(face-maps-comp(L)  y))
            {}\mRightarrow{}  ((\mneg{}(y  \mmember{}  map(\mlambda{}p.(fst(p));L)))  \mwedge{}  ((face-maps-comp(L)  y)  =  y)))
            \mwedge{}  ((\mneg{}\muparrow{}isname(face-maps-comp(L)  y))
                {}\mRightarrow{}  ((y  \mmember{}  map(\mlambda{}p.(fst(p));L))  \mwedge{}  ((face-maps-comp(L)  y)  =  outl(apply-alist(CnameDeq;L;y))))))
Date html generated:
2019_11_05-PM-00_25_15
Last ObjectModification:
2018_12_11-PM-11_41_33
Theory : cubical!sets
Home
Index